## UNDERGROUND STORAGE TANK SITE 22187 GROUNDWATER AND BIOSPARGING MONITORING REPORT APRIL 2005

# MARINE CORPS BASE CAMP PENDLETON, CALIFORNIA

Prepared For





NAVAL FACILITIES ENGINEERING SERVICE CENTER 1100 23rd Avenue, Port Hueneme, CA 93043-4301

and

NAVAL FACILITIES ENGINEERING COMMAND - SOUTHWEST DIVISION 1220 Pacific Highway, San Diego, CA 92132-5190

Contract number N47408-98-C-7500

15 JULY 2005

Prepared by



# UNDERGROUND STORAGE TANK SITE 22187 GROUNDWATER AND BIOSPARGING MONITORING REPORT April 2005

15 July 2005

Prepared for:

NAVAL FACILITIES ENGINEERING SERVICE CENTER PORT HUENEME, CALIFORNIA

and

SOUTHWEST DIVISION NAVAL FACILITIES ENGINEERING COMMAND SAN DIEGO, CALIFORNIA

Prepared by:

Cannon F. Silver, P.E.

Professional Engineer CH 5952

Project Manager

Devin Thor, R.G.

Registered Geologist No. 4080

Principal Geologist

#### **PARSONS**

100 West Walnut Street Pasadena, California 91124

### **CONTENTS**

|            | Page                                             |
|------------|--------------------------------------------------|
| List of Ac | ronyms and Abbreviationsiii                      |
| Section 1  | Introduction 1-1                                 |
|            | 1.1 Scope of Work 1-1                            |
|            | 1.2 Site Background                              |
|            | 1.3 Previous Investigations                      |
|            | 1.4 Geology and Hydrogeology1-2                  |
|            | 1.5 Cleanup Goals 1-2                            |
|            | 1.6 Biosparging/Bioventing System                |
| Section 2  | Field Activities and Procedures                  |
|            | 2.1 Groundwater Level Measurements               |
|            | 2.2 Groundwater Purging and Sampling2-1          |
|            | 2.3 Quality Assurance and Quality Control        |
|            | 2.4 Biosparging System Operation and Maintenance |
|            | 2.5 Soil Gas Sampling                            |
|            | 2.6 Waste Management2-3                          |
| Section 3  | Results3-1                                       |
|            | 3.1 Groundwater Elevations                       |
|            | 3.2 Analytical Results                           |
|            | 3.2.1 Data Quality Assessment                    |
|            | 3.2.2 Groundwater Contaminants                   |
|            | 3.2.3 Geochemical Indicators                     |
|            | 3.3 Explosion Hazard Monitoring                  |
|            | 3.4 Soil Gas Data                                |
| Section 4  | Conclusions and Recommendations                  |
|            | 4.1 Conclusions 4-1                              |
|            | 4.2 Recommendations 4-1                          |
| Section 5  | References 5-1                                   |
| Appendic   | es                                               |
| Appendix   | A Historical Data                                |
| Appendix   |                                                  |
| Appendix   |                                                  |
| Appendix   | · · · · · · · · · · · · · · · · · · ·            |
| • •        |                                                  |

## **TABLES**

| No. | Title                                                          | Section      |
|-----|----------------------------------------------------------------|--------------|
| 3-1 | Summary of Groundwater Elevation Data at Site 22187            | 3            |
| 3-2 | Summary of Petroleum Hydrocarbons in Groundwater at Site 22187 |              |
| 3-3 | Biosparging Dissolved Oxygen Data for Site 22187               | 3            |
| 3-4 | Summary of Groundwater Geochemical Data for Site 22187         | 3            |
| 3-5 | Biosparging/Bioventing Soil Gas Data for Site 22187            | 3            |
| A-1 | Historical Groundwater Elevations                              | . Appendix A |
| A-2 | Historical Hydrocarbons in Groundwater                         | 1 1          |
| A-3 | Historical Free Product Analysis                               | . Appendix A |
|     |                                                                |              |

## **FIGURES**

| No. | Title                                                                               | Section |
|-----|-------------------------------------------------------------------------------------|---------|
| 1-1 | Location of MCB Camp Pendleton                                                      | 1       |
| 1-2 | Site 22187 Location                                                                 | 1       |
| 1-3 | Detailed Site Layout                                                                |         |
| 1-4 | Geologic Cross Section A-A' and Estimated Extent of Soil Contamination              | 1       |
| 3-1 | Site 22187 Hydrograph                                                               | 3       |
| 3-2 | Groundwater Contour Map                                                             | 3       |
| 3-3 | TPH-D Concentration versus Groundwater Elevation for Selected Wells at Site 22187   | 3       |
| 3-4 | Benzene Concentration versus Groundwater Elevation for Selected Wells at Site 22187 |         |
| 3-5 | Distribution of Groundwater Contaminants                                            | 3       |
| 3-6 | Oxygen Utilization at Site 22187                                                    | 3       |
| A-1 | Historical Groundwater Gradient and Contaminant Distribution at Site 2218' Appe     |         |

#### LIST OF ACRONYMS AND ABBREVIATIONS

BS biosparging

BSMP biosparging monitoring point

BTEX benzene, toluene, ethylbenzene, and total xylenes

BV bioventing CO<sub>2</sub> carbon dioxide

cm/s centimeters per second DO dissolved oxygen

EPA U.S. Environmental Protection Agency

Fe(II) ferrous iron Fe(III) ferric iron

gpm gallons per minute HDPE high density polyethylene

LCS/LCSD laboratory control standards/laboratory control standards duplicate

LEL lower explosive level

LUFT leaking underground fuel tank

MCB Marine Corps Base

MCL maximum contaminant level

mg/L milligrams per liter

MS/MSD matrix spike/matrix spike duplicate

MTBE methyl tert-butyl ether MW monitoring well

NFESC Naval Facilities Engineering Service Center

O&M operation and maintenance

 $O_2$  oxygen

ORP oxygen reduction potential

QA quality assurance QC quality control

RPD relative percent differences

RWQCB Regional Water Quality Control Board

SAM Site Assessment and Mitigation SVOC semi-volatile organic compounds

SWDIV Southwest Division Naval Facilities Engineering Command

TBA tertiary butyl alcohol

TPH-D total petroleum hydrocarbons as diesel TPH-M total petroleum hydrocarbons as motor oil

TVH total volatile hydrocarbons UST underground storage tank micrograms per liter

#### **SECTION 1**

#### INTRODUCTION

This groundwater and biosparging (BS) system monitoring report was prepared for underground storage tank (UST) Site 22187, located at Marine Corps Base (MCB) Camp Pendleton, California. Parsons prepared the report for the United States Navy.

The groundwater sampling work conducted at the site, as well as the associated reporting activities, are performed for the U.S. Navy, Naval Facilities Engineering Service Center (NFESC) on behalf of the Naval Facilities Engineering Command, Southwest Division (SWDIV) under contract number N47408-98-C-7500. The report is prepared in accordance with direction from the U.S. Navy and with recommendations from the San Diego Regional Water Quality Control Board (RWQCB). In addition, the groundwater sampling is performed in accordance with the County of San Diego Site Assessment and Mitigation (SAM) Manual (County of San Diego, 2002).

This introduction (Section 1) contains project and site background information, including the BS/bioventing (BV) system. Section 2 contains sampling and analysis protocol and procedures. Section 3 summarizes sampling results. Section 4 contains conclusions and recommendations. Section 5 contains references cited. Appendix A provides historical groundwater elevation and analytical data. Appendix B contains groundwater sampling sheets and waste manifest forms. Appendix C contains laboratory analytical results from the latest sampling event. Appendix D contains RWQCB meeting notes from February 10, 2005.

#### 1.1 SCOPE OF WORK

Groundwater monitoring is a component of the scope of work from the U.S. Navy for the assessment and remediation of hydrocarbon-impacted soil and groundwater at the Building 22187 boiler plant. This monitoring includes measurements of groundwater levels and the collection and analysis of groundwater samples. In addition, this report discusses the impact on groundwater concentrations from the BS/BV system that commenced operation in April 2001.

The groundwater samples are analyzed for total petroleum hydrocarbons as diesel (TPH-D) during each monitoring event. Analysis for total petroleum hydrocarbons as motor oil (TPH-M) was discontinued in July 1999 because detected concentrations were at trace levels consistently below TPH-D concentrations. Samples collected this monitoring event were also tested for the presence of semi-volatile organic compounds (SVOC), in accordance with a request by the RWQCB. Also with RWQCB concurrence, analysis for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tert-butyl ether (MTBE) was discontinued after 2004 because detected concentrations consistently were below cleanup goals. To meet updated requirements of the RWQCB, samples collected in October 2000 were also tested for the presence of other oxygenates and the degradation product tertiary butyl alcohol (TBA); none were detected and analysis for these compounds has been discontinued.

#### 1.2 SITE BACKGROUND

MCB Camp Pendleton is located on the coast of northern San Diego County, California, and covers approximately 125,000 acres (Figure 1-1). Site 22187 is located in Area 22, in the southeast portion of MCB Camp Pendleton (Figure 1-2). The Santa Margarita River is located several thousand feet to the west of the site. Building 22187 is an active boiler plant. Two former fuel steel USTs (7,000-gallons and 30,000-gallons, respectively) removed in 1992 were located approximately 20 feet from the northwest corner of the boiler plant. Figure 1-3 presents a detailed site layout.

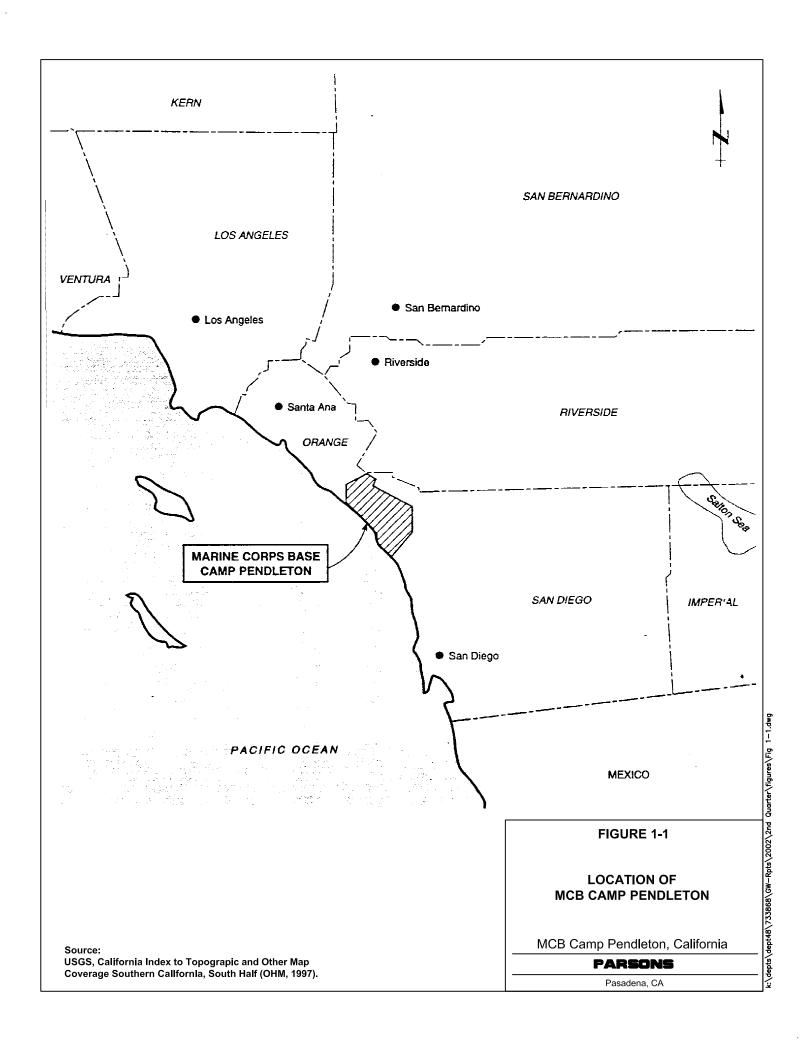
#### 1.3 PREVIOUS INVESTIGATIONS

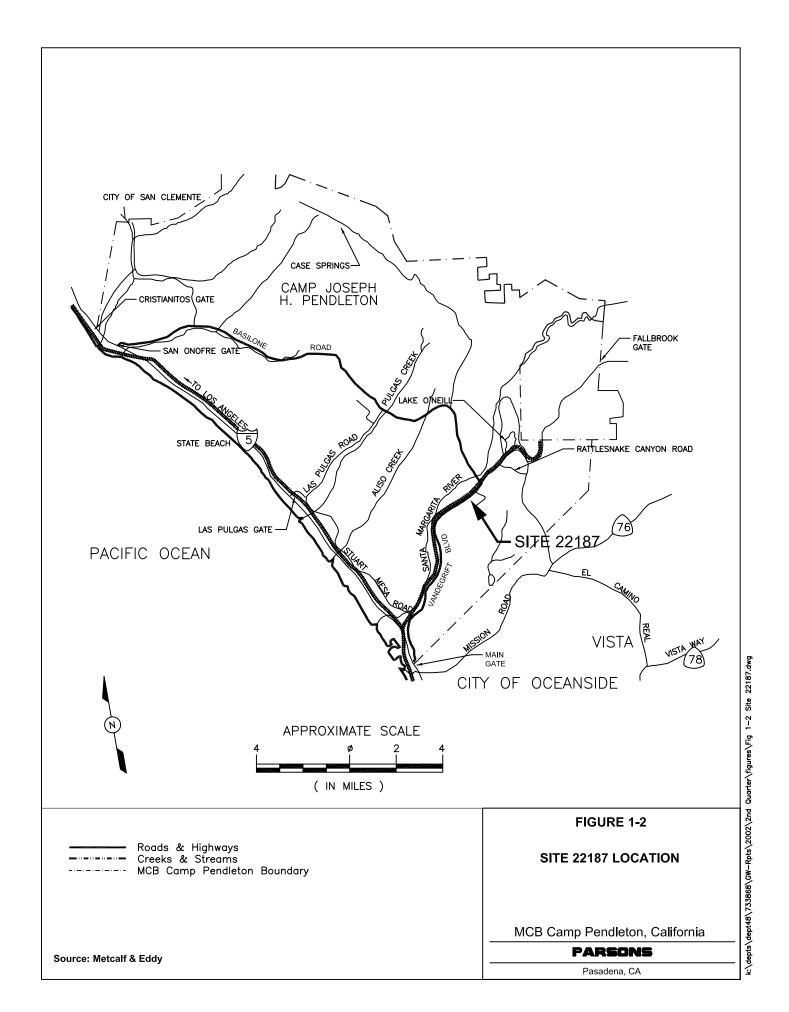
In 1986, the two Site 22187 USTs failed an integrity test conducted by AAA Testing (IT Corp., 1993). More recent investigations identified petroleum hydrocarbons in both the soil and groundwater at the site. BTEX compounds also were detected in the groundwater. Benzene was found in the groundwater at concentrations greater than the State of California's maximum contaminant level (MCL) for drinking water of 1 microgram per liter (µg/L). Although free product initially was not observed at the site, it was present in MW22187-10 during the Fourth Quarter 1997 monitoring event. Results of previous groundwater monitoring are presented in Appendix A.

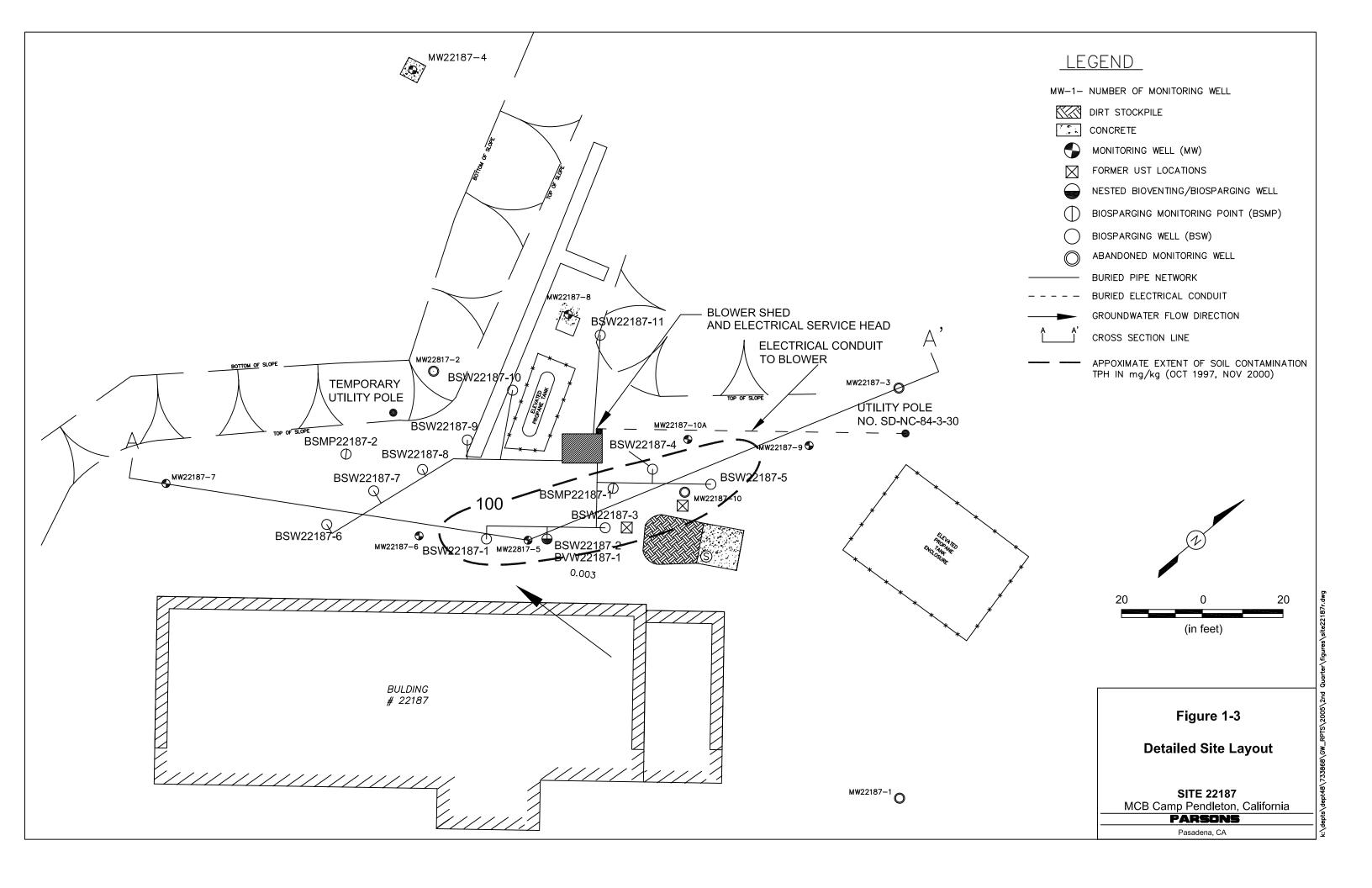
#### 1.4 GEOLOGY AND HYDROGEOLOGY

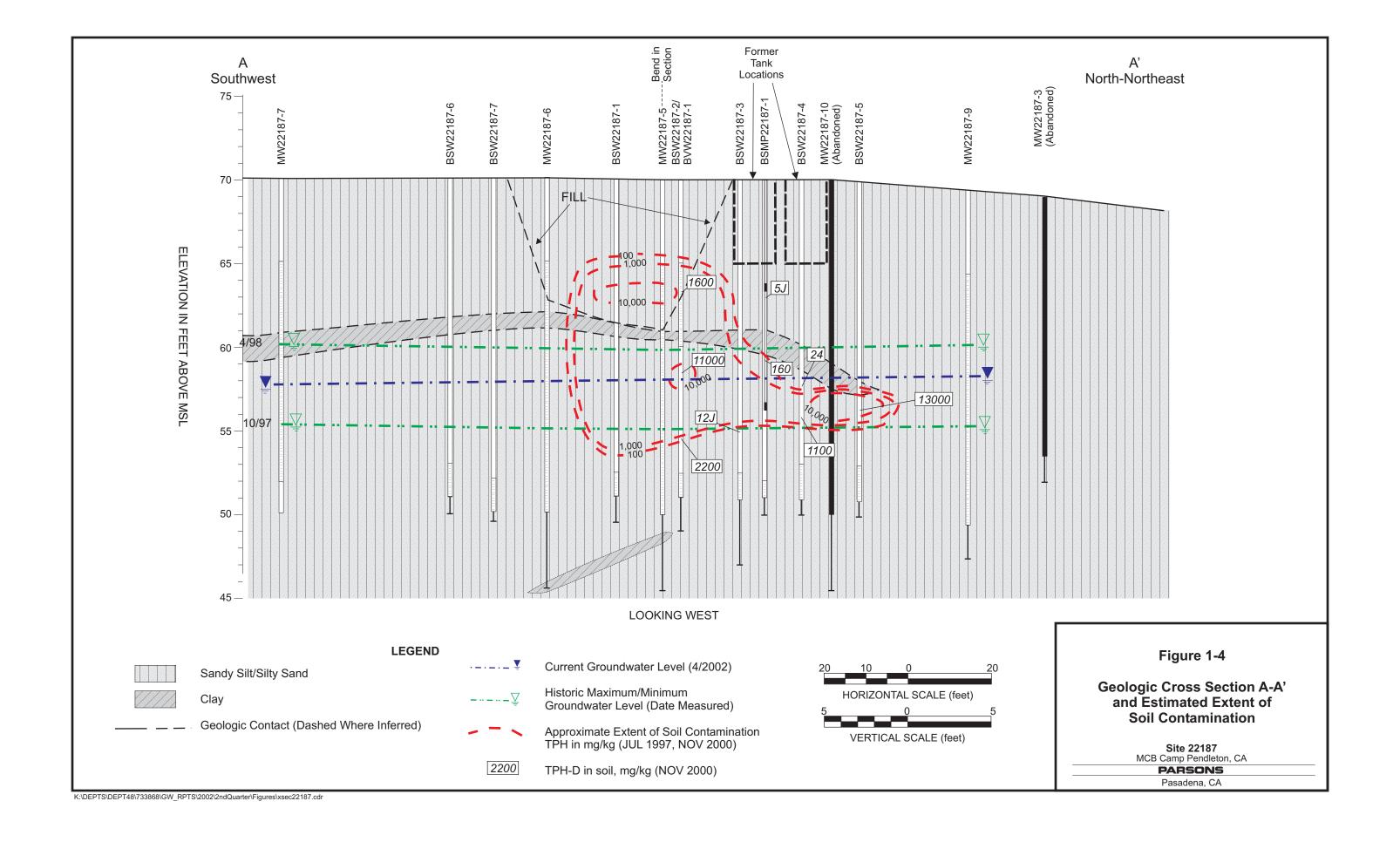
Quaternary alluvial deposits of the Santa Margarita River underlie the site. The loose- to medium-dense silty sands and discontinuous clay layers in the subsurface are interpreted to be floodplain deposits and locally artificial fill. A laterally significant 1-foot to 5-foot-thick clay zone that is laterally continuous beneath the site thickens and deepens to the east and pinches out to the west and north. Figure 1-4 presents a geologic cross-section that also illustrates the historical minimum and maximum groundwater levels and approximate extent of soil contamination in October 1997 and November 2000. The cross-section location is shown on Figure 1-3.

Site 22187 lies within the Chappo subunit of the Ysidora Hydrologic Area of the Santa Margarita Hydrologic Unit. Groundwater at the site is interpreted to flow toward the southwest, toward the adjacent and low-lying marshy area. Groundwater generally occurs beneath the laterally continuous clay zone. Falling head slug tests conducted in two of the monitoring wells (MWs) indicated that the hydraulic conductivity at the site ranges from 3.3 x 10<sup>-3</sup> centimeters per second (cm/s) to 1.8 x 10<sup>-4</sup> cm/s (IT Corp., 1993). This would be consistent with the relatively fast recovery of the wells observed during groundwater sampling. The groundwater gradient at the site typically has been calculated between 0.002 and 0.006 south to west.


#### 1.5 CLEANUP GOALS


The groundwater cleanup goals are identified in Table 3-2 and correspond to drinking water MCLs for BTEX compounds and MTBE and secondary MCL's for TPH-D. Cleanup goals were developed for soils based on a dual standard of leachable concentrations and soil concentrations. Cleanup goals were detailed in the *Final Remediation Work Plan for Underground Storage Tank Site 22187* (Parsons, 2000a) and modified for MTBE in groundwater according to the response to RWQCB comments (Parsons, 2000b).


#### 1.6 BIOSPARGING/BIOVENTING SYSTEM


A BS/BV system was installed at Site 22187 in accordance with the Remediation Work Plan (Parsons, 2000a), as approved by the RWQCB in a meeting on July 20, 2000. Eleven BS wells (BSW22187-1 through BSW22187-11) and two nested BS monitoring points (BSMPs) (BSMP22187-1 and BSMP22187-2) were installed. In addition, one BV well (BVW22187-1) was located adjacent to BSW22187-2. A letter report containing installation and startup results was submitted to the RWQCB on August 8, 2001 (Parsons, 2001a). The report identified that the BV blower was not needed, and recommended that only the BS blower be operated. The RWQCB responded with comments on April 30, 2002 (California RWQCB, 2002). A response dated June 3, 2002, was submitted to the RWQCB.

During a meeting with the RWQCB on February 10, 2005, it was agreed to continue BS system operation until a further reduction in oxygen utilization is observed. At that time, the BS system will be shutdown for one year to see if TPH concentrations stabilize (see Appendix D).









#### **SECTION 2**

#### FIELD ACTIVITIES AND PROCEDURES

This section describes the field activities conducted during this monitoring event and the procedures used to conduct these activities. The activities described include (1) measurement of groundwater levels, (2) collection of groundwater samples for chemical analyses, (3) collecting quality assurance/quality control groundwater samples, (4) BS system operation and maintenance (O&M), and (5) measurement of soil gas concentrations for monitoring the BS performance within the vadose zone. Also included is a discussion on the management of investigation-derived waste.

#### 2.1 GROUNDWATER LEVEL MEASUREMENTS

On April 14, 2005, prior to the collection of groundwater samples, groundwater levels were measured in seven MWs (MW22187-4 through MW22187-10A) at the site. The static depth to groundwater from the top of each well casing was measured to the nearest 0.01 foot using an electric water level probe. The depth to groundwater was converted to groundwater elevation using the surveyed top-of-casing elevation for each well.

#### 2.2 GROUNDWATER PURGING AND SAMPLING

Five of the seven MWs (MW22187-5 through MW22187-8 and MW22187-10A) were purged and sampled on April 14, 2005. Background well MW22187-9 and downgradient MW22187-4 were not sampled this event, in accordance with the groundwater monitoring schedule contained in the *Remediation Work Plan* (Parsons, 2000a).

Prior to the collection of a groundwater sample, each well was purged using a Grundfos® Redi-Flo II® pump with high density polyethylene (HDPE)-type tubing, set at a flow rate of approximately 2 gallons per minute (gpm). For purging, the volume of water contained within the well casing at the time of purging was calculated, and at least three times the calculated volume was removed from the well. Water quality parameters (pH, temperature, specific conductivity, and turbidity) were measured at regular intervals using a direct-reading meter. Dissolved oxygen (DO) concentrations and the oxygen reduction potential (ORP) were measured using a YSI Model 6820 instrument with a flow-through cell. The well was considered sufficiently purged when consecutive measurements of pH, temperature, and specific conductivity varied by less than 10 percent, and a minimum of three well casing volumes were removed. If the MW was evacuated to a dry state during purging, the MW was allowed to recharge, and the sample was collected as soon as sufficient water was present in the MW to obtain the necessary sample quantity.

Samples to be analyzed for volatile compounds were collected by lowering a new disposable polyethylene bailer into each well and carefully pouring the water down the inner walls of the sample bottle to minimize aeration of the sample.

The groundwater samples were analyzed for the following specific compounds:

• TPH-D using U.S. Environmental Protection Agency (EPA) Method 8015 Modified;

- SVOC using EPA Method 8270C; and
- Geochemical parameters including sulfate and nitrate using EPA Method 300.0; ferrous iron (Fe[II]) using EPA Method 3500DFE; alkalinity using EPA Method 310.1; and methane using RSK175.

Types of containers and volumes collected are noted on the groundwater sampling data sheets (Appendix B).

#### 2.3 QUALITY ASSURANCE AND QUALITY CONTROL

Groundwater samples were collected and preserved in accordance with both EPA and California Leaking Underground Fuel Tank (LUFT) protocols. The samples were delivered under a chain-of-custody in a cooler with ice to a state-certified laboratory.

Three types of quality-control (QC) samples were used to assess the adequacy of sampling, decontamination, and transportation procedures. Multiple sites are sampled during a given monitoring event; therefore, QC samples are collected appropriate to the defined need of the monitoring event, but not necessarily collected at every designated site.

- A trip blank sample was transported with each cooler and analyzed by Method 8260B. The trip blanks were used to determine whether cross-contamination of volatile organic compounds occurred during transportation to the laboratory.
- An equipment blank sample was collected during the monitoring event by running distilled water into and over the decontaminated pump. This sample was analyzed by Methods 8015M and 8260B to verify that the sampling equipment was free of organic contaminants.
- Field duplicate samples were collected at the rate of one for every ten primary samples and sent to the laboratory "blind."

#### 2.4 BIOSPARGING SYSTEM OPERATION AND MAINTENANCE

As recommended in the letter report on the BS/BV system installation and startup results (Parsons, 2001a), only the BS was operated. BS O&M was performed in accordance with the O&M Manual (Parsons, 2001b). System operation inspections were performed at least monthly and summarized in the monthly remediation system reports. In February 2002, the operation began on a cycled on/off schedule in order to reduce electrical consumption while maintaining elevated oxygen concentrations. Cycling between wells commenced in June 2002 to optimize oxygenation of groundwater. Based on the monitoring results, BSW22187-1 through BSW22187-5 and BSW22187-9 only have been cycled since August 2002 to focus on the former source area that is actively utilizing the oxygen.

System tarp and filters were replaced during March 2005. Otherwise, no maintenance of the system has been required.

Explosion hazard monitoring for vapors in underground utility areas was conducted on March 31, 2005. Underground utility areas at the site were monitored using a lower explosive level (LEL) meter to confirm no vapor migration.

#### 2.5 SOIL GAS SAMPLING

Soil gas sampling from selected MWs began in March 2001 prior to startup of the BS, and has been performed periodically as needed to evaluate the effect of BS on the vadose zone. The most recent soil gas monitoring occurred in April 2004. Soil gas samples are collected in a Tedlar bag using a vacuum pump. Soil gas concentrations of oxygen  $(O_2)$  and carbon dioxide  $(CO_2)$  are measured using either a Gastech GT408 meter or a Landfill Gas Analyzer GA-90, which is able to measure  $CO_2$  concentrations above 5%. Total volatile hydrocarbons (TVH) are periodically measured using a MiniRae PID.

#### 2.6 WASTE MANAGEMENT

During monitoring activities, groundwater was purged into a truck-mounted polyethylene tank and then transported to Crosby and Overton for treatment and disposal under a nonhazardous-waste manifest. A copy of the manifest is presented in Appendix B.

#### **SECTION 3**

#### RESULTS

This section presents the results of field activities conducted at the site, including groundwater level measurements and laboratory analyses of groundwater samples collected during this monitoring event. All work was conducted in accordance with the Site 22187 *Remediation Work Plan* (Parsons, 2000a), the sampling plan updated in the installation and startup letter report (Parsons, 2001a), and the *O&M Manual* (Parsons, 2001b).

#### 3.1 GROUNDWATER ELEVATIONS

Due to heavy winter rains, groundwater elevations increased in all of the wells on site in comparison to the previous monitoring event. The average increase was 2.31 feet, with a maximum increase of 2.49 feet in well MW22187-9. Table 3-1 presents a summary of groundwater elevations measured since July 1998. Groundwater level fluctuations at the site generally reflect seasonal changes, showing an increase during the wet months of winter and spring and a decrease during the dry months of summer and fall. Figure 3-1 shows a hydrograph of the groundwater elevation data collected to date. Historical groundwater elevations are provided in Appendix A.

The hydraulic gradient calculated for this site was 0.004 west. This is consistent with previous events. The hydraulic gradient and flow direction are illustrated on Figure 3-2.

#### 3.2 ANALYTICAL RESULTS

A summary of petroleum hydrocarbon concentrations detected in site groundwater since July 1998 is presented in Tables 3-2. Historical data are provided in Appendix A.

#### 3.2.1 Data Quality Assessment

Five primary samples were collected during this monitoring event. All samples were analyzed for diesel (modified method 8015) and one sample (MW22187-5) was analyzed for SVOCs (method 8270C). Diesel was detected in the equipment blank EB-01-0405 (0.014 milligrams per liter [mg/L]) and non-detect in the method blank; however, the presence and concentration of this compound in the associated blank does not impact site data. Diesel Surrogate recoveries were acceptable for all site and associated QC samples. laboratory control standards/laboratory control standards duplicate (LCS/LCSD) results demonstrate acceptable method precision and accuracy. Diesel matrix spike/matrix spike duplicate (MS/MSD) results were low; however, primary sample concentration exceeds for times the spike concentration and data qualification is not required. SVOC target compounds were not detected in the method blank. SVOC surrogate recoveries were acceptable for all site and associated QC samples. SVOC LCS/LCSD results demonstrate acceptable method precision and accuracy. Collected samples were properly preserved and shipped in two coolers to the laboratory which were received at temperatures of 3.8°C and 4.1 °C. Based on the review of the laboratory reports and quality assurance (QA)/QC analyses, the data was deemed acceptable and usable as reported. Laboratory reports are provided in Appendix C.

#### 3.2.2 Groundwater Contaminants

TPH-D was detected at or above the cleanup goal of 0.1 mg/L in all five of the MWs sampled this event. These TPH-D concentrations are generally within the range of historical concentrations, except at MW22187-8 where there was an increase from 0.79 mg/L in October 2004 to 6.5 mg/L this event. BS operation has focused on this portion of the site, and may be contributing to the release of residual contamination from the saturated zone from this portion of the site. TPH-D concentrations are likely to decrease as biodegradation processes proceed. Figure 3-3 shows the concentration trends of TPH-D versus groundwater elevation in selected site wells over time.

A sample from one well (MW22187-5) was analyzed for the presence of SVOCs and none were detected.

Figure 3-5 shows the locations and results of samples collected and analyzed during this monitoring event. Historical plume extents are shown on Figure A-1 in Appendix A.

#### 3.2.3 Geochemical Indicators

Biodegradation causes measurable changes in groundwater chemistry. Specifically, concentrations of petroleum hydrocarbons, DO, nitrate, Fe(II), sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds. Petroleum hydrocarbons readily serve as electron donors in both aerobic and anaerobic biodegradation processes. Electron acceptors include (in order of decreasing preference) DO, nitrate, ferric iron (Fe[III]), sulfate, and CO<sub>2</sub>. Electron acceptors and donors are depleted during biodegradation processes. Byproducts of biodegradation include CO<sub>2</sub>, water, nitrogen gas, Fe(II), hydrogen sulfide, and methane. Alkalinity also increases as CO<sub>2</sub> is produced.

One purpose of BS is to inject oxygen to increase groundwater DO concentrations and hence facilitate removal of petroleum hydrocarbons through aerobic biodegradation processes, which tend to proceed more quickly than anaerobic processes. DO is utilized for aerobic degradation of dissolved-phase petroleum hydrocarbons, and is most effective when DO concentration are maintained above 2 milligram per liter (mg/L) (USEPA, 2004). DO data collected since startup of the BS/BV system is listed in Table 3-3. During this reporting period, the BS system was operating approximately four months. During operation, DO concentrations generally remained below 2 mg/L in the four wells monitored. After 2 weeks following system shutoff, during respiration monitoring, two wells and two BSMPs indicated DO concentrations above 2 mg/L, ranging from 2.44 mg/L (at BSMP-2-18.5) to 4.49 mg/L (at MW22187-5). The inability of the BS system to maintain elevated DO during operation indicates that the BS system has limited effectiveness in oxygenating groundwater at the site.

Additional geochemical data collected during the April 2005 groundwater monitoring event are summarized in Table 3-4. This data was collected to evaluate the progress of anaerobic biodegradation processes. The following geochemical evaluation is primarily based on the most recently collected data (April 2005) as representative of current conditions.

During groundwater purging, field measurements of DO ranged between 0.42 mg/L and 3.46 mg/L, with the lowest concentrations detected in the samples collected from MW22187-6, MW22187-7, and MW22187-10A. The highest DO concentration was observed in the downgradient well (MW22187-8). Those portions of the plume with the lowest DO

concentrations are most likely representative of the portions of the plume experiencing anaerobic biodegradation processes.

ORP, is a measure of the relative tendency of a solution to accept or transfer electrons. The ORP of a groundwater system depends on (and may in turn control) which electron acceptors are being reduced by microorganisms during BTEX oxidation. Low ORP measured in the areas of contamination provide a general indication that biodegradation is occurring. ORP measured in the field during groundwater purging ranged from 154.9 millivolts (mV) to -80.1 mV, with the lowest values measured in MW22187-5 and MW22187-6, the wells in the middle of the plume.

Nitrate concentrations ranged from 1.6 mg/L to 9.3 mg/L. The depletion of nitrate throughout most of the site suggests that nitrate has been used as an electron donor and that denitrification has occurred.

Sulfate concentrations at the site ranged from 240 mg/L to 630 mg/L. The lowest sulfate concentrations were detected in the samples collected from wells MW22187-6 and MW22187-7, whereas the highest sulfate concentration was detected in the sample collected from well MW22187-8. This relationship may indicate in which portions of the plume that anaerobic biodegradation of petroleum hydrocarbons is proceeding through the microbially mediated process of sulfate reduction.

When Fe(III) is used as an electron acceptor during anaerobic biodegradation of organic carbon, it is reduced to Fe(II), which is soluble in water. Higher Fe(II) concentrations inside the contaminant plume versus background Fe(II) concentrations can be used as an indicator that anaerobic degradation of organic carbon has occurred or is occurring via Fe(III) reduction. Fe(II) concentrations ranged from non-detect (<0.05 mg/L) to 0.2 mg/L. The concentrations measured during this monitoring event are uniformly low and do not suggest that iron reduction is occurring.

Methane can be a strong indicator of biodegradation. The preferred biodegradation pathways discussed above produce acetate as an intermediate product and  $CO_2$  as a final product of TPH-D and BTEX degradation. When oxygen and other electron acceptor levels are depleted, methanogenic bacteria begin to convert  $CO_2$  to methane. Because methane is not present in fuel, the presence of methane above background concentrations in fuel-contaminated groundwater is indicative of microbial degradation of fuel hydrocarbons. Thus, an elevated methane concentration is an excellent indicator of microbial degradation. At Site 22187, detected methane concentrations ranged from non-detect (<3  $\mu$ g/L) to 29  $\mu$ g/L. These results are substantially lower then past results in 1997 through 1999. Methane was not elevated within the plume, indicating that methanogenesis is not occurring.

In summary, the geochemical data collected during this monitoring event present only weak evidence of anaerobic biodegradation in portions of the plume. These portions of the plume are somewhat depleted in concentrations of electron acceptors including DO, nitrate, and sulfate and indicate a slightly reducing redox potential, but concentrations of metabolic byproducts such as Fe(II) and methane are not elevated. It is likely that the active BS operation is currently counteracting the widespread formation of anaerobic biodegradation conditions.

#### 3.3 EXPLOSION HAZARD MONITORING

The well boxes, sewer manholes, and storm drain at the site were monitored for potential explosion hazards. On March 31, 2005, a LEL meter was used at the sewer manholes and the measurements were 0.0%. Therefore, there is no explosion hazard present at the site.

#### 3.4 SOIL GAS DATA

Soil gas monitoring data collected from the vadose zone of the BSMPs is summarized in Table 3-5. Historically, the O<sub>2</sub> concentrations became elevated (near saturated oxygen conditions) in the monitoring locations during system operation and during respiration testing (once the BS is turned off and during the off cycle mode), oxygen levels decreased. Carbon dioxide concentrations generally decreased while atmospheric air was being introduced to the subsurface, and increased during respiration testing after the blower was cycled off.

Oxygen utilization rates are determined from oxygen data obtained during in situ respiration testing. The rates are calculated as the zero order relationship between percent oxygen and time. Typically, a rapid linear decrease in oxygen is observed, followed by a lag period once oxygen concentrations drop below approximately 5% (Leeson and Hinchee, 1997).

Figure 3-6 illustrates oxygen utilization versus time, as measured in BSMP-1-6.5 during respiration test periods in 2001 through 2005. Respiration rates have generally continued to decrease during this time period. Through 2003, the oxygen utilization rates at Site 22187 remained at or above 2%/day in BSMP-1-6.5, located nearest the former UST location. During 2004, the oxygen utilization rate has decreased to between 0.8%/day and 1.2%/day. In March through mid-April, 2005, the oxygen utilization rate further decreased to 0.6%/day. These measurements indicate that residual contamination has been reduced and that the BS system may be nearing the end of its ability to remove residual vadose zone contamination near the former source area.

Table 3-1
Summary of Groundwater Elevation Data at Site 22187
MCB Camp Pendleton, California

|      |            | Well Head        | Depth to | Depth to | Product   |                  |
|------|------------|------------------|----------|----------|-----------|------------------|
| Well | Date       | Elevation        | Water    | Product  | Thickness | GW Elevation     |
|      |            | (feet above MSL) | (feet)   | (feet)   | (feet)    | (feet above MSL) |
| MW-4 | 7/22/1998  | 63.50            | 5.49     | ND       | 0         | 58.01            |
| MW-4 | 10/21/1998 |                  | 6.62     | ND       | 0         | 56.88            |
| MW-4 | 1/25/1999  |                  | 5.25     | ND       | 0         | 58.25            |
| MW-4 | 5/10/1999  |                  | 4.98     | ND       | 0         | 58.52            |
| MW-4 | 7/19/1999  |                  | 5.68     | ND       | 0         | 57.82            |
| MW-4 | 10/5/1999  |                  | 6.78     | ND       | 0         | 56.72            |
| MW-4 | 1/25/2000  |                  | 7.88     | ND       | 0         | 55.62            |
| MW-4 | 4/3/2000   |                  | 6.57     | ND       | 0         | 56.93            |
| MW-4 | 7/23/2000  |                  | 6.62     | ND       | 0         | 56.88            |
| MW-4 | 10/16/2000 |                  | 7.71     | ND       | 0         | 55.79            |
| MW-4 | 2/7/2001   |                  | 6.46     | ND       | 0         | 57.04            |
| MW-4 | 4/27/2001  |                  | 4.80     | ND       | 0         | 58.70            |
| MW-4 | 10/11/2001 |                  | 6.47     | ND       | 0         | 57.03            |
| MW-4 | 4/26/2002  |                  | 5.59     | ND       | 0         | 57.91            |
| MW-4 | 10/15/2002 |                  | 7.57     | ND       | 0         | 55.93            |
| MW-4 | 4/17/2003  |                  | 3.95     | ND       | 0         | 59.55            |
| MW-4 | 10/16/2003 |                  | 5.67     | ND       | 0         | 57.83            |
| MW-4 | 10/25/2004 |                  | 5.67     | ND       | 0         | 57.83            |
| MW-4 | 4/14/2005  |                  | 3.60     | ND       | 0         | 59.90            |
| MW-5 | 7/21/1998  | 70.15            | 11.91    | ND       | 0         | 58.24            |
| MW-5 | 10/21/1998 |                  | 13.11    | ND       | 0         | 57.04            |
| MW-5 | 1/25/1999  |                  | 12.12    | ND       | 0         | 58.03            |
| MW-5 | 5/10/1999  |                  | 11.49    | ND       | 0         | 58.66            |
| MW-5 | 7/19/1999  |                  | 12.13    | ND       | 0         | 58.02            |
| MW-5 | 10/5/1999  |                  | 13.21    | ND       | 0         | 56.94            |
| MW-5 | 1/25/2000  |                  | 14.38    | ND       | 0         | 55.77            |
| MW-5 | 4/3/2000   |                  | 13.12    | ND       | 0         | 57.03            |
| MW-5 | 7/23/2000  |                  | 13.18    | ND       | 0         | 56.97            |
| MW-5 | 10/16/2000 |                  | 14.21    | ND       | 0         | 55.94            |
| MW-5 | 2/7/2001   |                  | 13.12    | ND       | 0         | 57.03            |
| MW-5 | 4/27/2001  |                  | 11.30    | ND       | 0         | 58.85            |
| MW-5 | 10/11/2001 |                  | 13.01    | ND       | 0         | 57.14            |
| MW-5 | 4/26/2002  |                  | 12.10    | ND       | 0         | 58.05            |
| MW-5 | 10/15/2002 |                  | 14.02    | ND       | 0         | 56.13            |
| MW-5 | 4/17/2003  |                  | 10.46    | ND       | 0         | 59.69            |
| MW-5 | 10/16/2003 |                  | 12.24    | ND       | 0         | 57.91            |
| MW-5 | 4/1/2004   |                  | 10.99    | ND       | 0         | 59.16            |
| MW-5 | 10/25/2004 |                  | 12.27    | ND       | 0         | 57.88            |
| MW-5 | 4/14/2005  |                  | 9.84     | ND       | 0         | 60.31            |

Table 3-1
Summary of Groundwater Elevation Data at Site 22187
MCB Camp Pendleton, California

|       |            | Well Head        | Depth to | Depth to | Product   |                  |
|-------|------------|------------------|----------|----------|-----------|------------------|
| Well  | Date       | Elevation        | Water    | Product  | Thickness | GW Elevation     |
| 11011 | Date       | (feet above MSL) | (feet)   | (feet)   | (feet)    | (feet above MSL) |
| MW-6  | 7/21/1998  | 70.45            | 11.91    | ND       | 0         | 58.54            |
| MW-6  | 10/21/1998 |                  | 13.45    | ND       | 0         | 57.00            |
| MW-6  | 1/25/1999  |                  | 12.00    | ND       | 0         | 58.45            |
| MW-6  | 5/10/1999  |                  | 11.86    | ND       | 0         | 58.59            |
| MW-6  | 7/19/1999  |                  | 12.49    | ND       | 0         | 57.96            |
| MW-6  | 10/5/1999  |                  | 13.58    | ND       | 0         | 56.87            |
| MW-6  | 1/25/2000  |                  | 14.71    | ND       | 0         | 55.74            |
| MW-6  | 4/3/2000   |                  | 13.42    | ND       | 0         | 57.03            |
| MW-6  | 7/23/2000  |                  | 13.50    | ND       | 0         | 56.95            |
| MW-6  | 10/16/2000 |                  | 14.57    | ND       | 0         | 55.88            |
| MW-6  | 2/7/2001   |                  | 13.43    | ND       | 0         | 57.02            |
| MW-6  | 4/27/2001  |                  | 11.60    | ND       | 0         | 58.85            |
| MW-6  | 10/11/2001 |                  | 13.35    | ND       | 0         | 57.10            |
| MW-6  | 4/26/2002  |                  | 12.46    | ND       | 0         | 57.99            |
| MW-6  | 10/15/2002 |                  | 14.37    | ND       | 0         | 56.08            |
| MW-6  | 4/17/2003  |                  | 10.82    | ND       | 0         | 59.63            |
| MW-6  | 10/16/2003 |                  | 12.60    | ND       | 0         | 57.85            |
| MW-6  | 4/1/2004   |                  | 11.30    | ND       | 0         | 59.15            |
| MW-6  | 10/25/2004 |                  | 12.62    | ND       | 0         | 57.83            |
| MW-6  | 4/14/2005  |                  | 10.27    | ND       | 0         | 60.18            |
| MW-7  | 7/22/1998  | 70.11            | 12.02    | ND       | 0         | 58.09            |
| MW-7  | 10/21/1998 |                  | 13.22    | ND       | 0         | 56.89            |
| MW-7  | 1/25/1999  |                  | 11.85    | ND       | 0         | 58.26            |
| MW-7  | 5/10/1999  |                  | 11.62    | ND       | 0         | 58.49            |
| MW-7  | 7/19/1999  |                  | 12.27    | ND       | 0         | 57.84            |
| MW-7  | 10/5/1999  |                  | 13.35    | ND       | 0         | 56.76            |
| MW-7  | 1/25/2000  |                  | 14.40    | ND       | 0         | 55.71            |
| MW-7  | 4/3/2000   |                  | 13.18    | ND       | 0         | 56.93            |
| MW-7  | 7/23/2000  |                  | 13.32    | ND       | 0         | 56.79            |
| MW-7  | 10/16/2000 |                  | 14.34    | ND       | 0         | 55.77            |
| MW-7  | 2/7/2001   |                  | 13.13    | ND       | 0         | 56.98            |
| MW-7  | 4/27/2001  |                  | 11.41    | ND       | 0         | 58.70            |
| MW-7  | 10/11/2001 |                  | 13.14    | ND       | 0         | 56.97            |
| MW-7  | 4/26/2002  |                  | 12.26    | ND       | 0         | 57.85            |
| MW-7  | 10/15/2002 |                  | 14.51    | ND       | 0         | 55.60            |
| MW-7  | 4/17/2003  |                  | 10.65    | ND       | 0         | 59.46            |
| MW-7  | 10/16/2003 |                  | 12.38    | ND       | 0         | 57.73            |
| MW-7  | 4/1/2004   |                  | 11.15    | ND       | 0         | 58.96            |
| MW-7  | 10/25/2004 |                  | 12.38    | ND       | 0         | 57.73            |
| MW-7  | 4/14/2005  |                  | 10.15    | ND       | 0         | 59.96            |

Table 3-1
Summary of Groundwater Elevation Data at Site 22187
MCB Camp Pendleton, California

|      | Ī          | WOB Camp i       |          |          |           |                  |
|------|------------|------------------|----------|----------|-----------|------------------|
|      | _          | Well Head        | Depth to | Depth to | Product   |                  |
| Well | Date       | Elevation        | Water    | Product  | Thickness |                  |
|      |            | (feet above MSL) | (feet)   | (feet)   | (feet)    | (feet above MSL) |
| MW-8 | 7/22/1998  | 72.09            | 13.86    | ND       | 0         | 58.23            |
| MW-8 | 10/21/1998 |                  | 15.50    | ND       | 0         | 56.59            |
| MW-8 | 1/25/1999  |                  | 13.65    | ND       | 0         | 58.44            |
| MW-8 | 5/10/1999  |                  | 14.42    | ND       | 0         | 57.67            |
| MW-8 | 7/19/1999  |                  | 14.05    | ND       | 0         | 58.04            |
| MW-8 | 10/5/1999  |                  | 15.18    | ND       | 0         | 56.91            |
| MW-8 | 1/25/2000  |                  | 16.32    | ND       | 0         | 55.77            |
| MW-8 | 4/3/2000   |                  | 15.07    | ND       | 0         | 57.02            |
| MW-8 | 7/23/2000  |                  | 15.07    | ND       | 0         | 57.02            |
| MW-8 | 10/16/2000 |                  | 16.14    | ND       | 0         | 55.95            |
| MW-8 | 2/7/2001   |                  | 15.04    | ND       | 0         | 57.05            |
| MW-8 | 4/27/2001  |                  | 13.23    | ND       | 0         | 58.86            |
| MW-8 | 10/11/2001 |                  | 14.89    | ND       | 0         | 57.20            |
| MW-8 | 4/26/2002  |                  | 14.08    | ND       | 0         | 58.01            |
| MW-8 | 10/15/2002 |                  | 15.94    | ND       | 0         | 56.15            |
| MW-8 | 4/17/2003  |                  | 12.37    | ND       | 0         | 59.72            |
| MW-8 | 10/16/2003 |                  | 14.13    | ND       | 0         | 57.96            |
| MW-8 | 4/1/2004   |                  | 12.87    | ND       | 0         | 59.22            |
| MW-8 | 10/25/2004 |                  | 14.15    | ND       | 0         | 57.94            |
| MW-8 | 4/14/2005  |                  | 11.90    | ND       | 0         | 60.19            |
| MW-9 | 4/16/1997  | 69.78            | 10.63    | ND       | 0         | 59.15            |
| MW-9 | 6/11/1997  |                  | 11.57    | ND       | 0         | 58.21            |
| MW-9 | 10/28/1997 |                  | 14.56    | ND       | 0         | 55.22            |
| MW-9 | 2/6/1998   |                  | 13.24    | ND       | 0         | 56.54            |
| MW-9 | 4/6/1998   | 00.70            | 9.75     | ND       | 0         | 60.03            |
| MW-9 | 7/21/1998  | 69.78            | 11.40    | ND       | 0         | 58.38            |
| MW-9 | 10/21/1998 |                  | 12.65    | ND       | 0         | 57.13            |
| MW-9 | 1/25/1999  |                  | 11.10    | ND       | 0         | 58.68            |
| MW-9 | 5/10/1999  |                  | 10.98    | ND       | 0         | 58.80            |
| MW-9 | 7/19/1999  |                  | 11.59    | ND       | 0         | 58.19            |
| MW-9 | 10/5/1999  |                  | 12.71    | ND       | 0         | 57.07            |
| MW-9 | 1/25/2000  |                  | 13.93    | ND       | 0         | 55.85            |
| MW-9 | 4/3/2000   |                  | 12.68    | ND       | 0         | 57.10            |
| MW-9 | 7/23/2000  |                  | 12.67    | ND       | 0         | 57.11            |
| MW-9 | 10/16/2000 |                  | 13.71    | ND       | 0         | 56.07            |
| MW-9 | 2/7/2001   |                  | 12.62    | ND       | 0         | 57.16            |
| MW-9 | 4/27/2001  |                  | 10.77    | ND       | 0         | 59.01            |
| MW-9 | 10/11/2001 |                  | 12.48    | ND       | 0         | 57.30            |
| MW-9 | 4/26/2002  |                  | 11.61    | ND       | 0         | 58.17            |
| MW-9 | 10/15/2002 |                  | 13.45    | ND       | 0         | 56.33            |
| MW-9 | 4/17/2003  |                  | 9.90     | ND       | 0         | 59.88            |
| MW-9 | 10/16/2003 |                  | 11.57    | ND       | 0         | 58.21            |
| MW-9 | 10/25/2004 |                  | 11.74    | ND       | 0         | 58.04            |
| MW-9 | 4/14/2005  |                  | 9.25     | ND       | 0         | 60.53            |

Table 3-1
Summary of Groundwater Elevation Data at Site 22187
MCB Camp Pendleton, California

|        |            | Well Head        | Depth to | Depth to | Product   |                     |
|--------|------------|------------------|----------|----------|-----------|---------------------|
| Well   | Date       | Elevation        | Water    | Product  | Thickness | <b>GW Elevation</b> |
|        |            | (feet above MSL) | (feet)   | (feet)   | (feet)    | (feet above MSL)    |
| MW-10A | 7/21/1998  | 69.58            | 11.31    | ND       | 0         | 58.27               |
| MW-10A | 10/21/1998 |                  | 12.45    | ND       | 0         | 57.13               |
| MW-10A | 1/25/1999  |                  | 11.25    | ND       | 0         | 58.33               |
| MW-10A | 5/10/1999  |                  | 10.88    | ND       | 0         | 58.70               |
| MW-10A | 7/19/1999  |                  | 11.53    | ND       | 0         | 58.05               |
| MW-10A | 10/5/1999  |                  | 12.63    | ND       | 0         | 56.95               |
| MW-10A | 1/25/2000  |                  | 13.80    | ND       | 0         | 55.78               |
| MW-10A | 4/3/2000   |                  | 12.51    | ND       | 0         | 57.07               |
| MW-10A | 7/23/2000  |                  | 12.58    | ND       | 0         | 57.00               |
| MW-10A | 10/16/2000 |                  | 13.63    | ND       | 0         | 55.95               |
| MW-10A | 2/7/2001   |                  | 12.51    | ND       | 0         | 57.07               |
| MW-10A | 4/27/2001  |                  | 10.63    | ND       | 0         | 58.95               |
| MW-10A | 10/11/2001 |                  | 12.38    | ND       | 0         | 57.20               |
| MW-10A | 4/26/2002  |                  | 11.47    | ND       | 0         | 58.11               |
| MW-10A | 10/15/2002 |                  | 13.39    | ND       | 0         | 56.19               |
| MW-10A | 4/17/2003  |                  | 9.80     | ND       | 0         | 59.78               |
| MW-10A | 10/16/2003 |                  | 11.62    | ND       | 0         | 57.96               |
| MW-10A | 4/1/2004   |                  | 10.37    | ND       | 0         | 59.21               |
| MW-10A | 10/25/2004 |                  | 11.63    | ND       | 0         | 57.95               |
| MW-10A | 4/14/2005  |                  | 9.25     | ND       | 0         | 60.33               |

NA = Not available

ND = Not detected

**Bold** indicates results from the most recent sampling event.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 22187
MCB Camp Pendleton, California

| Well     | Sample ID        | Date       | TPH-D   | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE   |
|----------|------------------|------------|---------|---------|---------|--------------|---------|--------|
|          |                  |            | (mg/L)  | (μg/L)  | (μg/L)  | (μg/L)       | (μg/L)  | (μg/L) |
| Clean Up | Goals 1          |            | 0.1     | 1       | 150     | 680          | 1750    | 13     |
| MW-4     | 22187-MW4-603    | 7/22/1998  | < 0.04  | < 0.5   | < 0.08  | < 0.5        | 0.04 J  | NA     |
| MW-4     | MW22187-4-0199   | 1/28/1999  | < 0.5   | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5    |
| MW-4     | MW22187-4-0599   | 5/10/1999  | < 0.5   | < 0.5   | < 0.5   | < 0.5        | 0.8 J1  | 2 J1   |
| MW-4     | MW22187-4-1099   | 10/6/1999  | < 0.1   | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5    |
| MW-4     | MW22187-4-1000   | 10/19/2000 | 0.2 J1  | < 1     | < 1     | < 1          | < 2     | < 5    |
| MW-4     | MW22187-04-1001  | 10/15/2001 | < 0.07  | < 1     | <1      | < 1          | < 2     | < 5    |
| MW-4     | MW22187-4        | 4/30/2002  | < 0.05  | < 1     | < 1     | < 1          | < 2     | < 5    |
| MW-4     | MW22187-4-1002   | 10/15/2002 | < 0.009 | < 1     | 9.1     | < 1          | < 2     | < 5    |
| MW-4     | MW22187-4-1003   | 10/16/2003 | < 0.096 | < 1     | < 1     | < 1          | < 2     | < 5    |
| MW-4     | MW22187-4-1004   | 10/25/2004 | < 0.096 | < 1     | < 1     | <1           | < 2     | < 5    |
| MW-5     | 22187-MW5-604    | 7/21/1998  | 1.3     | 2.8     | < 0.1 J | 15.2 J       | < 0.9   | NA     |
| MW-5     | MW22187-5-0199   | 1/28/1999  | 3.2     | 5.8     | < 0.5   | 8.2          | < 1.5   | 21     |
| MW-5     | MW22187-5-0599   | 5/10/1999  | 1.9     | 2.6     | < 0.5   | 3.7          | 2.5 J1  | 5      |
| MW-5     | MW22187-5-1099   | 10/6/1999  | 1.3     | 0.8     | < 0.5   | < 0.5        | < 1.5   | 2.7 J1 |
| MW-5     | MW22187-5-0400   | 4/6/2000   | 1.4     | 4.2     | < 1     | < 1          | < 2     | 5 J1   |
| MW-5     | MW22187-5-1000   | 10/19/2000 | 0.6     | 1 J1    | < 1     | < 1          | < 2     | < 2    |
| MW-5     | MW22187-5-0401   | 4/30/2001  | 1.3     | 0.9 J1  | < 1     | < 1          | < 2     | 2 J1   |
| MW-5     | MW22187-5-1001   | 10/15/2001 | 0.42    | 1       | < 1     | < 1          | < 2     | 6      |
| MW-5 d   | MW22187-99-1001  | 10/15/2001 | 0.47    | < 1     | < 1     | < 1          | < 2     | < 5    |
| MW-5     | MW22187-5        | 4/29/2002  | 1.6     | 1       | < 1     | < 1          | <2      | 4 J1   |
| MW-5 d   | MW22187-99       | 4/29/2002  | 1.5     | 1 J1    | < 1     | < 1          | < 2     | 4 J1   |
| MW-5     | MW22187-MW5-1002 | 10/15/2002 | < 0.1   | < 5     | 110     | < 5          | 2 J1    | < 25   |
| MW-5 d   | MW22187-99-1002  | 10/15/2002 | < 0.16  | 0.3     | 79      | 0.5          | 3.5     | 0.4    |
| MW-5     | MW22187-5-0403   | 4/18/2003  | 0.21    | < 1     | < 1     | < 1          | < 2     | < 5    |
| MW-5     | MW22187-5-1003   | 10/16/2003 | 0.35    | < 1     | < 1     | < 1          | < 2     | < 5    |
| MW-5     | MW22187-5-0404   | 4/1/2004   | 0.42    | < 1     | < 1     | < 1          | < 2     | < 5    |
| MW-5     | MW22187-5-1004   | 10/25/2004 | 0.53    | <1      | < 1     | < 1          | < 2     | < 5    |
| MW-5     | MW22187-5-0405   | 4/14/2005  | 0.56    | NA      | NA      | NA           | NA      | NA     |

J Estimated Value

mg/L milligram per liter
µg/L microgram per liter
not analyzed
NS not sampled

MTBE methyl tert-butyl ether EB Equipment blank

TB Trip blank

d Field duplicate sample

Notes: Samples analyzed after 1999 were analyzed for BTEX using method SW8260B instead of method SW8021 All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling event. All results were non-detect.

J1 Result is less than the PQL but greater than the MDL

PQL Project quantitation limit

MDL Method detection limit

<sup>&</sup>lt;sup>1</sup>BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2 Summary of Petroleum Hydrocarbons in Groundwater at Site 22187 MCB Camp Pendleton, California

| Well     | Sample ID          | Date       | TPH-D  | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE    |
|----------|--------------------|------------|--------|---------|---------|--------------|---------|---------|
|          |                    |            | (mg/L) | (μg/L)  | (μg/L)  | (μg/L)       | (μg/L)  | (μg/L)  |
| Clean Up | Goals <sup>1</sup> |            | 0.1    | 1       | 150     | 680          | 1750    | 13      |
| MW-6     | 22187-MW6-605      | 7/21/1998  | 0.9    | 0.4 J1  | < 0.2 J | 0.9 J        | < 0.7   | NA      |
| MW-6     | MW22187-6-0199     | 1/28/1999  | 1.3    | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5     |
| MW-6     | MW22187-6-0599     | 5/10/1999  | 1.4    | 1.3     | < 0.5   | 1.4          | 1.3 J1  | 9       |
| MW-6     | MW22187-6-1099     | 10/6/1999  | 0.69   | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 5       |
| MW-6 d   | MW22187-99-1099    | 10/6/1999  | 0.99   | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 4 J1    |
| MW-6     | MW22187-6-0400     | 4/6/2000   | 0.7    | < 1     | < 1     | < 1          | < 2     | 3 J1    |
| MW-6     | MW22187-6-1000     | 10/19/2000 | 0.8    | < 1     | < 1     | < 1          | < 2     | 3 J1    |
| MW-6 d   | MW22187-99-1000    | 10/19/2000 | 0.9    | < 1     | < 1     | < 1          | < 2     | <2      |
| MW-6     | MW22187-6-0401     | 4/30/2001  | 0.8    | < 1     | < 1     | <1           | < 2     | 2 J1    |
| MW-6     | MW22187-6-1001     | 10/15/2001 | 0.38   | < 1     | < 1     | < 1          | < 2     | 0.6 J1  |
| MW-6     | MW22187-6          | 4/29/2002  | 1.8    | 7.7     | < 1     | 15           | < 2     | 5       |
| MW-6     | MW22187-6-1002     | 10/15/2002 | < 0.1  | <1      | 14      | < 1          | < 2     | 2       |
| MW-6     | MW22187-6-0403     | 4/18/2003  | 0.65   | <1      | < 1     | < 1          | < 2     | 0.45 J1 |
| MW-6     | MW22187-6-1003     | 10/16/2003 | 0.26   | <1      | < 1     | < 1          | < 2     | 0.32 J1 |
| MW-6     | MW22187-6-0404     | 4/1/2004   | 0.34   | < 1     | <1      | < 1          | < 2     | < 5     |
| MW-6     | MW22187-6-1004     | 10/25/2004 | 0.38   | < 1     | < 1     | < 1          | < 2     | < 5     |
| MW-6 d   | MW22187-99-1004    | 10/25/2004 | 0.51   | <1      | 0.61 J1 | < 1          | < 2     | < 5     |
| MW-6     | MW22187-6-0405     | 4/14/2005  | 0.23   | NA      | NA      | NA           | NA      | NA      |

mg/L milligram per liter μg/L

microgram per liter 'nΑ not analyzed not sampled

MTBE methyl tert-butyl ether EΒ Equipment blank

Trip blank TB

Field duplicate sample

Notes: Samples analyzed after 1999 were analyzed for BTEX using method SW8260B instead of method SW8021 All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling event. All results were non-detect.

NS

**Estimated Value** 

Result is less than the PQL but greater than the MDL

PQL Project quantitation limit

MDL Method detection limit

<sup>&</sup>lt;sup>1</sup>BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 22187
MCB Camp Pendleton, California

| Well     | Sample ID       | Date       | TPH-D  | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE    |
|----------|-----------------|------------|--------|---------|---------|--------------|---------|---------|
|          |                 |            | (mg/L) | (μg/L)  | (μg/L)  | (μg/L)       | (μg/L)  | (μg/L)  |
| Clean Up | Goals 1         |            | 0.1    | 1       | 150     | 680          | 1750    | 13      |
| MW-7     | 22187-MW7-606   | 7/22/1998  | < 0.1  | < 0.5   | < 0.08  | < 0.5        | 0.02 J  | NA      |
| MW-7     | MW22187-7-0199  | 1/28/1999  | 0.7    | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5     |
| MW-7     | MW22187-7-0599  | 5/10/1999  | 0.5    | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 5       |
| MW-7     | MW22187-7-0799  | 7/20/1999  | 2      | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 12    |
| MW-7     | MW22187-7-1099  | 10/6/1999  | 1.4    | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 5.9     |
| MW-7     | MW22187-7       | 1/26/2000  | 1.1    | <1      | < 1     | <1           | < 2     | 3 J1    |
| MW-7     | MW22187-7-0400  | 4/4/2000   | 0.8    | <1      | < 1     | <1           | < 2     | 2 J1    |
| MW-7     | MW22187-7-0700  | 7/24/2000  | 0.7    | < 1     | < 1     | <1           | < 2     | 4 J1    |
| MW-7 d   | MW22187-99-0700 | 7/24/2000  | 0.7    | < 1     | < 1     | < 1          | < 2     | 5       |
| MW-7     | MW22187-7-1000  | 10/18/2000 | 0.8    | < 1     | < 1     | < 1          | < 2     | 4 J1    |
| MW-7     | 22187-7-0201    | 2/8/2001   | 0.5    | < 1     | < 1     | < 1          | < 2     | 3 J1    |
| MW-7     | MW22187-7-0401  | 4/30/2001  | 0.4 J1 | < 1     | < 1     | < 1          | < 2     | 1 J1    |
| MW-7     | MW22187-7-1001  | 10/15/2001 | 0.36   | < 1     | < 1     | <1           | < 2     | 0.7 J1  |
| MW-7     | MW22187-7       | 4/29/2002  | 0.43   | < 1     | < 1     | <1           | < 2     | 3 J1    |
| MW-7     | MW22187-7-1002  | 10/15/2002 | < 0.1  | < 1     | 43      | <1           | 0.8 J1  | 3       |
| MW-7     | MW22187-7-0403  | 4/18/2003  | 0.21   | < 1     | < 1     | <1           | < 2     | 0.45 J1 |
| MW-7     | MW22187-7-1003  | 10/16/2003 | 0.35   | < 1     | < 1     | <1           | < 2     | 0.79 J1 |
| MW-7     | MW22187-7-0404  | 4/1/2004   | 0.49   | < 1     | < 1     | < 1          | < 2     | 0.57 J1 |
| MW-7     | MW22187-7-1004  | 10/25/2004 | 0.72   | < 1     | < 1     | < 1          | < 2     | 1.2 J1  |
| MW-7     | MW22187-7-0405  | 4/14/2005  | 0.1    | NA      | NA      | NA           | NA      | NA      |

J1 Result is less than the PQL but greater than the MDL

PQL Project quantitation limit

MDL Method detection limit

mg/L milligram per liter

μg/L microgram per liter NA not analyzed

NS not sampled

MTBE methyl tert-butyl ether

EB Equipment blank

TB Trip blank

d Field duplicate sample

Notes: Samples analyzed after 1999 were analyzed for BTEX using method SW8260B instead of method SW8021 All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling event. All results were non-detect.

J Estimated Value

<sup>&</sup>lt;sup>1</sup>BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2 Summary of Petroleum Hydrocarbons in Groundwater at Site 22187 MCB Camp Pendleton, California

| Well     | Sample ID       | Date       | TPH-D    | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE    |
|----------|-----------------|------------|----------|---------|---------|--------------|---------|---------|
|          |                 |            | (mg/L)   | (μg/L)  | (μg/L)  | (μg/L)       | (μg/L)  | (μg/L)  |
| Clean Up | Goals 1         |            | 0.1      | 1       | 150     | 680          | 1750    | 13      |
| MW-8     | 22187-MW8-607   | 7/22/1998  | 0.2 J1   | < 5     | < 5     | < 5          | 0.02 J  | NA      |
| MW-8     | MW22187-8-0199  | 1/28/1999  | 0.6      | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 32      |
| MW-8     | MW22187-8-0599  | 5/10/1999  | 0.5 J1   | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 24      |
| MW-8     | MW22187-8-1099  | 10/5/1999  | 0.55     | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 16      |
| MW-8     | MW22187-8-0400  | 4/4/2000   | < 0.5    | < 1     | < 1     | < 1          | < 2     | < 5     |
| MW-8     | MW22187-8-1000  | 10/19/2000 | 0.5 J    | < 1     | <1      | < 1          | < 2     | 4 J1    |
| MW-8     | MW22187-8-0401  | 5/1/2001   | 0.4 J1   | <1      | < 1     | < 1          | < 2     | 3 J1    |
| MW-8     | MW22187-8-1001  | 10/15/2001 | 0.36     | < 1     | < 1     | <1           | < 2     | 1 J1    |
| MW-8     | MW22187-8       | 4/30/2002  | 0.28     | <1      | < 1     | < 1          | < 2     | 0.6 J1  |
| MW-8     | MW22187-8-1002  | 10/15/2002 | < 0.1    | < 1     | 53      | < 1          | 1.4 J1  | 1       |
| MW-8     | MW22187-8-0403  | 4/18/2003  | 0.57     | < 1     | < 1     | < 1          | < 2     | < 5     |
| MW-8     | MW22187-8-1003  | 10/16/2003 | 0.67     | <1      | < 1     | < 1          | < 2     | < 5     |
| MW-8 d   | MW22187-99-1003 | 10/16/2003 | 0.33     | < 1     | < 1     | <1           | < 2     | 0.39 J1 |
| MW-8     | MW22187-8-0404  | 4/1/2004   | 1.3      | < 1     | < 1     | < 1          | < 2     | < 5     |
| MW-8     | MW22187-8-1004  | 10/25/2004 | 0.79     | <1      | < 1     | < 1          | < 2     | < 5     |
| MW-8     | MW22187-8-0405  | 4/14/2005  | 6.5      | NA      | NA      | NA           | NA      | NA      |
| MW-9     | 22187-MW9-608   | 7/21/1998  | < 0.05   | < 0.5   | < 0.5 J | < 0.5 J      | 0.04 J1 | NA      |
| MW-9     | MW22187-9-0199  | 1/28/1999  | < 0.5    | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5     |
| MŴ-9     | MW22187-9-0599  | 5/10/1999  | < 0.5    | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 6       |
| MW-9     | MW22187-9-1099  | 10/5/1999  | 0.1      | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5     |
| MW-9     | MW22187-9-1000  | 10/18/2000 | 0.06 J1  | < 1     | < 1     | < 1          | < 2     | < 1     |
| MW-9     | MW22187-9-1001  | 10/12/2001 | < 0.1    | < 1     | < 1     | < 1          | < 2     | < 5     |
| MW-9     | MW22187-9       | 4/26/2002  | 0.35     | < 1     | < 1     | < 1          | < 2     | 0.6 J1  |
| MW-9     | MW22187-9-1002  | 10/15/2002 | < 0.1    | < 1     | 16      | < 1          | < 2     | 0.6     |
| MW-9     | MW22187-9-1003  | 10/16/2003 | < 0.096  | < 1     | < 1     | < 1          | < 2     | < 5     |
| MW-9     | MW22187-9-1004  | 10/25/2004 | 0.026 J1 | <1      | 0.47 J1 | < 1          | < 2     | < 5     |

**Estimated Value** 

Result is less than the PQL but greater than the MDL

PQL Project quantitation limit

MDL Method detection limit

mg/L milligram per liter μg/L

microgram per liter NΑ not analyzed NS not sampled

MTBE methyl tert-butyl ether Equipment blank EB

TB Trip blank

Field duplicate sample

Notes: Samples analyzed after 1999 were analyzed for BTEX using method SW8260B instead of method SW8021 All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling event. All results were non-detect.

<sup>&</sup>lt;sup>1</sup>BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 22187
MCB Camp Pendleton, California

| Well     | Sample ID          | Date       | TPH-D    | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE    |
|----------|--------------------|------------|----------|---------|---------|--------------|---------|---------|
|          |                    |            | (mg/L)   | (μg/L)  | (μg/L)  | (μg/L)       | (μg/L)  | (μg/L)  |
| Clean Up | Goals <sup>1</sup> |            | 0.1      | 1       | 150     | 680          | 1750    | 13      |
| MW-10A   | 22187-MW10A-609    | 7/21/1998  | 0.3 J1   | < 0.5   | < 0.5 J | < 0.5 J      | 0.04 J1 | NA      |
| MW-10A   | MW22187-10A-0199   | 1/28/1999  | 0.2 J1   | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5     |
| MW-10A   | MW22187-10A-0599   | 5/10/1999  | 0.3 J1   | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 4 J1    |
| MW-10A   | MW22187-10A-1099   | 10/5/1999  | 0.55     | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5     |
| MW-10A   | MW22187-10A-0400   | 4/4/2000   | 0.2 J1   | <1      | < 1     | < 1          | < 2     | < 5     |
| MW-10A   | MW22187-10A-1000   | 10/18/2000 | 0.5      | < 1     | < 1     | < 1          | < 2     | < 0.6   |
| MW-10A   | MW22187-10A-0401   | 4/30/2001  | < 0.2    | <1      | < 1     | < 1          | < 2     | < 5     |
| MW-10A   | MW22187-10A-1001   | 10/15/2001 | < 0.08   | < 1     | <1      | < 1          | <2      | 0.8 J1  |
| MW-10A   | MW22187-10A        | 4/26/2002  | < 0.096  | <1      | <1      | . <1         | < 2     | 0.4 J1  |
| MW-10A   | MW22187-10A-1002   | 10/15/2002 | < 0.1    | <1      | 15      | < 1          | < 2     | 0.5     |
| MW-10A   | MW22187-10A-0403   | 4/18/2003  | 0.15     | <1      | < 1     | < 1          | < 2     | < 5     |
| MW-10A   | MW22187-10A-1003   | 10/16/2003 | 0.069 J1 | <1      | < 1     | < 1          | < 2     | 0.35 J1 |
| MW-10A   | MW22187-10A-0404   | 4/1/2004   | 0.1      | < 1     | < 1     | < 1          | < 2     | < 5     |
| MW-10A   | MW22187-10A-1004   | 10/25/2004 | 0.11     | < 1     | <1      | < 1          | < 2     | 0.36 J1 |
| MW-10A   | MW22187-10A-0405   | 4/14/2005  | 0.27     | NA      | NA      | NA           | NA      | NA      |

J Estimated Value

J1 Result is less than the PQL but greater than the MDL

PQL Project quantitation limit

MDL. Method detection limit

mg/L milligram per liter μg/L microgram per liter

μg/L microgram per ito NA not analyzed NS not sampled MTBE methyl tert-butyl ether

EB Equipment blank

TB Trip blank

d Field duplicate sample

Notes: Samples analyzed after 1999 were analyzed for BTEX using method SW8260B instead of method SW8021 All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling event. All results were non-detect.

<sup>&</sup>lt;sup>1</sup>BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2 Summary of Petroleum Hydrocarbons in Groundwater at Site 22187 MCB Camp Pendleton, California

| Well     | Sample ID    | Date       | TPH-D    | Benzene | Toluene | Ethylbenzene | Xylenes | МТВЕ   |
|----------|--------------|------------|----------|---------|---------|--------------|---------|--------|
|          |              |            | (mg/L)   | (μg/L)  | (μg/L)  | (μg/L)       | (μg/L)  | (μg/L) |
| Clean Up | Goals 1      |            | 0.1      | 1       | 150     | 680          | 1750    | 13     |
| EB       | EB-01-0599   | 5/10/1999  | 0.04 J1  | < 0.5   | 0.1 J1  | 1            | 1.1 J1  | 1 J1   |
| EB       | EB-01-0799   | 7/20/1999  | < 0.5    | < 0.5   | < 0.5   | < 0.5        | < 1.5   | 4 J1   |
| EB       | EB-01-1099   | 10/6/1999  | 0.02 J1  | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5    |
| EB       | EB01-0700    | 7/25/2000  | 0.08 J1  | < 0.5   | < 0.5   | < 0.5        | < 1.5   | NA     |
| EB       | EB-02-0799   | 7/26/2000  | NA       | < 1     | < 1     | < 1          | < 2     | < 5    |
| EB       | EB-03-1000   | 10/18/2000 | < 0.5    | < 1     | < 1     | < 1          | < 2     | < 5    |
| EB       | EB-04-1000   | 10/19/2000 | < 0.5    | < 1     | < 1     | < 1          | < 2     | 0.5 J1 |
| EB       | EB-01-0201   | 2/8/2001   | < 0.5    | < 1     | < 1     | < 1          | < 2     | < 5    |
| EB       | EB-05-0401   | 4/30/2001  | 0.04 J1  | < 0.5   | < 0.5   | 1.6          | 2.4     | < 5    |
| EB       | EB-03-1001   | 10/12/2001 | 0.1      | 0.2 J1  | 0.6     | 1.1          | 1       | NA     |
| EB       | EB-04-1001   | 10/15/2001 | 0.05 J1  | <1      | <1      | < 1          | < 2     | < 5    |
| EB       | QCEB         | 4/29/2002  | 0.01 J1  | <1      | < 1     | < 1          | < 2     | 0.5 J1 |
| EB       | QCEB         | 4/30/2002  | 0.04 J1  | < 1     | < 1     | < 1          | < 2     | < 5    |
| EB       | QCEB-02-1002 | 10/15/2002 | NA       | <1      | <1      | < 1          | < 2     | < 5    |
| EB       | QCEB01-1002  | 10/16/2002 | 0.2      | NA      | NA      | NA           | NA      | NA     |
| EB       | QCEB-01-0403 | 4/22/2003  | < 0.096  | < 1     | 0.42 J1 | < 1          | 0.86 J1 | < 5    |
| EB       | EB-01-1003   | 10/16/2003 | < 0.096  | < 1     | < 1     | < 1          | < 2     | < 5    |
| EB       | EB-01-0404   | 4/1/2004   | < 0.096  | < 1     | < 1     | < 1          | < 2     | < 5    |
| EB       | EB-01-1004   | 10/25/2004 | < 0.096  | < 1     | < 1     | < 1          | < 2     | < 5    |
| EB       | EB-01-0405   | 4/11/2005  | 0.014 J1 | < 1     | <1      | <1           | < 2     | < 5    |

Estimated Value

Result is less than the PQL but greater than the MDL

PQL Project quantitation limit

MDL Method detection limit

mg/L milligram per liter μg/L NA

microgram per liter

not analyzed NS not sampled

MTBE methyl tert-butyl ether

Equipment blank EB TB Trip blank

Field duplicate sample

Notes: Samples analyzed after 1999 were analyzed for BTEX using method SW8260B instead of method SW8021 All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling event. All results were non-detect.

<sup>1</sup>BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 22187
MCB Camp Pendleton, California

| Well     | Sample ID    | Date       | TPH-D  | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE   |
|----------|--------------|------------|--------|---------|---------|--------------|---------|--------|
|          |              |            | (mg/L) | (μg/L)  | (μg/L)  | (μg/L)       | (μg/L)  | (μg/L) |
| Clean Up | Goals 1      |            | 0.1    | 1       | 150     | 680          | 1750    | 13     |
| ТВ       | TB-01-0599   | 5/10/1999  | NA     | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5    |
| ТВ       | TRIP BLANK   | 7/20/1999  | NA     | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5    |
| ТВ       | TB-02-1099   | 10/5/1999  | NA     | < 0.5   | 0.6     | < 0.5        | < 1.5   | < 5    |
| ТВ       | TB-03-1099   | 10/6/1999  | NA     | < 0.5   | < 0.5   | < 0.5        | < 1.5   | < 5    |
| ТВ       | TRIP BLANK   | 1/26/2000  | NA     | < 1     | < 1     | < 1          | < 2     | < 5    |
| ТВ       | TRIP BLANK-1 | 4/4/2000   | NA     | <1      | < 1     | < 1          | < 2     | < 5    |
| ТВ       | TB-02-1000   | 10/18/2000 | NA     | < 1     | < 1     | < 1          | < 2     | < 5    |
| ТВ       | TB-03-1000   | 10/19/2000 | NA     | <1      | < 1     | < 1          | < 2     | < 5    |
| ТВ       | TB-01-0201   | 2/8/2001   | NA     | <1      | < 1     | < 1          | <2      | < 5    |
| ТВ       | TB-04-0401   | 4/30/2001  | NA     | <1      | < 1     | < 1          | < 2     | < 5    |
| ТВ       | TB-03-1001   | 10/12/2001 | NA     | 0.2 J1  | 0.8     | 1.1          | 2       | NA     |
| ТВ       | TB-04-1001   | 10/15/2001 | NA     | < 1     | < 1     | < 1          | < 2     | < 5    |
| ТВ       | QCTB         | 4/26/2002  | NA     | <1      | < 1     | < 1          | < 2     | < 5    |
| ТВ       | QCTB         | 4/29/2002  | NA     | <1      | 0.3 J1  | < 1          | < 2     | < 5    |
| ТВ       | QCTB         | 4/30/2002  | NA     | <1      | < 1     | < 1          | < 2     | < 5    |
| ТВ       | QCTB-01-1002 | 10/15/2002 | NA     | <1      | < 1     | · <1         | < 2     | < 5    |
| ТВ       | QCTB-03-0403 | 4/18/2003  | NA     | < 1     | < 1     | < 1          | < 2     | < 5    |
| ТВ       | QCTB-05-0404 | 4/1/2004   | NA     | <1      | < 1     | . <1         | < 3     | < 5    |
| ТВ       | TB05-1004    | 10/25/2004 | NA     | <1      | < 1     | <1           | < 2     | < 5    |

J1 Result is less than the PQL but greater than the MDL

PQL Project quantitation limit

MDL Method detection limit

mg/L milligram per liter µg/L microgram per liter

NA not analyzed NS not sampled MTBE methyl tert-butyl ether

EB Equipment blank

TB Trip blank

d Field duplicate sample

Notes: Samples analyzed after 1999 were analyzed for BTEX using method SW8260B instead of method SW8021 All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling event. All results were non-detect.

J Estimated Value

<sup>&</sup>lt;sup>1</sup>BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-3
Biosparging Dissolved Oxygen Data for Site 22187
MCB Camp Pendleton, California

| Monitoring  | _         | P-1-18.5    | _         | P-2-18.5   |          | IW-5        |               | W-6    |               | W-7    |      | IW-8           |               | W-9        |             | V-10A  |
|-------------|-----------|-------------|-----------|------------|----------|-------------|---------------|--------|---------------|--------|------|----------------|---------------|------------|-------------|--------|
| Location    |           |             |           |            |          |             | Distance to E |        | Distance to E | T      |      | BSW-11: 9.5 ft | Distance to B |            | Distance to |        |
|             | Time      | DO          | Time      | DO         | Time     | DO          | Time          | DO     | Time          | DO     | Time | DO             | Time          | DO         | Time        | DO     |
| DATE        |           | (mg/L)      |           | (mg/L)     |          | (mg/L)      |               | (mg/L) |               | (mg/L) |      | (mg/L)         |               | (mg/L)     |             | (mg/L) |
| 04/04/01    | 0959      | 4.53        | 1001      | 0.91       | 0951     | 0.09        | 0946          | 0.10   | 0947          | 0.10   | 0921 | 0.11           | 0915          | 0.16       | 0918        | 0.13   |
| BV system s |           |             |           | 0.91       | 0951     | 0.09        | 0946          | 0.10   | 0947          | 0.10   | 0921 | 0.11           | 0915          | 0.10       | 0910        | 0.13   |
| BS system s |           |             |           |            |          |             |               |        |               |        |      |                |               |            |             |        |
| 04/09/01    | 1015      | 3.67        | 1026      | 1.26       | 1018     | 1.45        | 1033          | 0.16   | Ι.            | I -    | 1030 | 0.27           | Ι.            | l <u>.</u> | 1039        | 0.10   |
| 04/09/01    | 1127      | 1.73        | 1125      | 1.44       | 1135     | 1.45        | 1138          | 0.10   |               | _      | 1142 | 0.28           |               | _          | -           | -      |
| 04/09/01    | 1348      | 3.56        | 1339      | 1.80       | 1330     | 1.03        | 1333          | 0.11   | 1345          | 0.09   | 1352 | 0.51           | 1407          | 0.10       | 1403        | 0.08   |
| 04/09/01    | 1516      | 2.81        | 1512      | 0.81       | 1507     | 0.09        | 1502          | 0.11   | 1435          | 0.09   | 1453 | 0.11           | 1444          | 0.16       | 1448        | 0.08   |
| 04/11/01    | 1050      | 2.60        | 1055      | 0.74       | 1040     | 0.03        | 1035          | 0.10   | 1030          | 0.10   | 1023 | 0.16           | 1013          | 0.15       | 1018        | 0.13   |
| 04/16/01    | 1208      | 2.79        | 1156      | 2.57       | 1150     | 0.00        | 1126          | 0.00   | 1124          | 0.11   | 1134 | 0.10           | 1141          | 0.13       | 1138        | 0.11   |
| 04/20/01    | 1200      | 2.13        | 1138      | 1.27       | 1130     | 0.07        | 1133          | 0.03   | 1135          | 0.13   | 1140 | 0.00           | 1145          | 0.07       | 1143        | 0.06   |
| System Shu  | t-Off/Res | spiration T |           |            |          | 0.07        | 1100          | 0.07   | 1100          | 0.00   | 1140 | 0.07           | 1140          | 0.00       | 1140        | 0.00   |
| 04/20/01    | 1344      | 1.15        | 1340      | 1.73       | 1337     | 0.16        | 1338          | 0.11   | 1339          | 0.11   | 1341 | 0.10           | 1343          | 0.06       | 1342        | 0.11   |
| 04/20/01    | 1531      | 0.23        | 1541      | 1.57       | 1523     | 0.10        | 1529          | 0.08   | 1530          | 0.11   | 1527 | 0.06           | 1525          | 0.10       | 1523        | 0.11   |
| 04/23/01    | 0804      | 0.008       | 0800      | 2.61       | 0755     | 0.07        | 0756          | 0.07   | 0758          | 0.09   | 0802 | 0.22           | 0807          | 0.19       | 0805        | 0.34   |
| 04/30/01    | 1220      | 0.12        | 1242      | 2.71       | 1230     | 0.07        | 1234          | 0.06   | 1237          | 0.09   | 1218 | 0.09           | 1206          | 0.18       | 1214        | 0.12   |
| 07/11/01    | 1150      | 0.19        | 1220      | 2.73       | 1148     | 0.13        | 1205          | 0.13   | 1207          | 0.12   | 1230 | 0.14           | 1203          | 0.26       | 1201        | 0.19   |
| System Star | tup: 07/  | 11/01       |           |            |          |             |               |        |               |        |      |                |               |            |             |        |
| 09/25/01    | 1251      | 0.26        | 1300      | 2.26       | 1245     | 0.18        | -             | -      | -             | -      | -    | -              | -             | -          | -           | -      |
| System shut | tdown pr  | rior to gro | undwate   | sampling   | event: 0 | 9/25/01 13  | 3:28          |        |               |        |      |                | <u>-</u>      |            |             |        |
| 10/02/01    | 1203      | 0.15        | 1210      | 0.6        | 1155     | 0.14        | -             | -      | -             | -      | -    | -              | -             | -          | -           | -      |
| 10/15/01    | -         | -           | -         | -          | 1339     | 0.47        | 1116          | 0.46   | 1020          | 0.66   | 1225 | 2.09           | 1350          | 0.51       | 1312        | 0.53   |
| System shut | tdown pr  | rior to gro | undwate   | rsampling  | event: ( | 04/12/02 07 | 7:25          |        |               |        |      |                |               |            |             |        |
| 04/29/02    | -         | -           | -         | -          | 1025     | 0.00        | 0951          | 1.47   | 0856          | 3.29   | 1059 | 5.28           | 1402          | 3.67       | 1441        | 0.65   |
| System Res  | tarted BS | SWs 1-5, 9  | : 06/24/0 | 2 12:45    |          |             |               |        |               |        |      |                |               |            |             |        |
| 07/02/02    | 1338      | 0.81        | 1322      | 2.62       | -        | -           | -             | -      | -             | -      | -    | -              | -             | -          | -           | -      |
| System puls |           |             | 7/02/02 1 |            |          |             |               |        |               |        |      |                |               |            |             |        |
| 07/11/02    | 1026      | 0.46        | 1030      | 1.62       | -        | -           | -             |        | -             | -      | -    |                | -             | -          | -           | -      |
| System puls |           |             |           |            |          |             |               |        |               |        |      |                |               |            |             |        |
| System shut |           |             | undwate   | r sampling | event: ( | 9/17/02 10  | 0:55          |        |               |        |      |                |               |            |             |        |
| 09/17/02    | 1115      | 1.50        | -         | -          | -        | -           | -             | -      | -             | -      | -    | -              | -             | -          | -           | -      |
| 10/15/02    | 0845      | 3.37        | 0930      | 3.75       | -        | -           | -             | -      | -             | -      | -    | -              | -             | -          | -           | -      |
| 10/25/02    | 0805      | 1.09        | 0813      | 1.96       | -        | -           | -             | -      | -             | -      | -    | -              | -             | -          | -           | _      |
| System rest |           |             |           |            |          | 1           |               |        |               | ı      |      |                | T             | 1          |             |        |
| 10/31/02    | 1235      | 0.55        | 1242      | 1.16       | -        | -           | -             | -      | -             | -      | -    | -              | -             | -          | -           | -      |
| 02/06/03    | 0837      | 0.83        | 0846      | 4.12       | 0856     | 1.12        | 0850          | 0.65   | -             | -      | -    | -              | -             | -          | 0910        | 2.72   |
| System cycl |           |             |           |            |          |             |               |        | 1             | 1      |      |                | _             | Т          |             |        |
| 02/07/03    | 0922      | 1.65        | 0931      | 4.42       | 0943     | 1.26        | 0935          | 1.4    | -             | -      | -    | -              | -             | -          | 0949        | 1.58   |

DO O2 respiration field-data.xls\22187 DO 7/19/2005

Table 3-3
Biosparging Dissolved Oxygen Data for Site 22187
MCB Camp Pendleton, California

| Monitoring | BSM         | P-1-18.5     | BSM           | P-2-18.5       | M           | IW-5          | M             | W-6          | M             | W-7          | IV          | IW-8           | MW-9          |              | MW          | V-10A       |
|------------|-------------|--------------|---------------|----------------|-------------|---------------|---------------|--------------|---------------|--------------|-------------|----------------|---------------|--------------|-------------|-------------|
| Location   | Distance to | BSW-3: 10 ft | Distance to I | BSW-7: 11.5 ft | Distance to | BSW-2: 4.5 ft | Distance to E | 3SW-1: 17 ft | Distance to E | 3SW-6: 41 ft | Distance to | BSW-11: 9.5 ft | Distance to B | SW-10: 26 ft | Distance to | BSW-5: 7 ft |
|            | Time        | DO           | Time          | DO             | Time        | DO            | Time          | DO           | Time          | DO           | Time        | DO             | Time          | DO           | Time        | DO          |
| DATE       |             | (mg/L)       |               | (mg/L)         |             | (mg/L)        |               | (mg/L)       |               | (mg/L)       |             | (mg/L)         |               | (mg/L)       |             | (mg/L)      |
| 02/10/03   | 0817        | 0.87         | 0758          | 3.98           | 0810        | 0.81          | 0805          | 1.06         | -             | -            | -           | -              | -             | -            | 0827        | 1.4         |
| System cyc | led on B    | SWs 1-5, 9   | : 2/17/03     | 3 12:30        |             |               |               |              |               |              |             |                |               |              |             |             |
| System shu | tdown p     | rior to gro  | undwate       | r sampling     | event: 0    | 04/01/03 08   | :41           |              |               |              |             |                |               |              |             |             |
| 04/17/03   | -           | -            | -             | -              | 1335        | 2.88          | 1307          | 1.86         | 1221          | 1.38         | 1132        | 5.07           | -             | -            | 1243        | 3.3         |
| 04/17/03   | -           | -            | -             | -              | 1335        | 0.45          | 1314          | 0.19         | 1227          | 0.21         | 1148        | 1.75           | -             | -            | 1250        | 0.33        |
| System cyc | led on B    | SWs 1-5, 9   | : 4/23/03     | 3 07:40        |             |               |               |              |               |              |             |                |               |              |             |             |
| 07/15/03   | 1554        | 0.36         | -             | -              | 1554        | 0.24          | 1554          | 0.27         | -             | -            | -           | -              | -             | -            | 1554        | 0.21        |
| System shu | tdown p     | rior to gro  | undwate       | r sampling     | event: 0    | 9/22/03 14    |               |              |               | _            | _           |                | _             | _            |             |             |
| 10/16/03   | -           | -            | -             | -              | 1518        | 1.4           | 1423          | 0.08         | 1316          | 0.28         | 22.04       | 0.22           | 1222          | 0.44         | 1350        | 0.12        |
| System cyc | led on B    | SWs 1-5, 9   | : 11/06/0     | 3 12:30        |             |               |               |              |               |              |             |                |               |              |             |             |
| System shu | tdown p     | rior to gro  | undwate       | r sampling     |             | 3/19/04 09    | 00            |              |               |              |             |                |               |              |             |             |
| 04/01/04   | -           | -            | -             | -              | 1504        | 2.07          | 1426          | 0.27         | 1355          | 0.2          | 1340        | 0.21           | -             | -            | 1304        | 0.67        |
| System cyc | led on B    | SWs 1-5, 9   | : 04/16/0     | 04 0710        |             |               |               |              |               |              |             |                |               |              |             |             |
| System shu | tdown p     | rior to gro  | undwate       | r sampling     | event: 0    | )9/21/04      |               |              |               |              |             |                | _             | _            | _           |             |
| 09/21/04   | -           | 0.26         | -             | -              | -           | 0.64          | -             | 0.28         | -             | -            | -           | -              | -             | -            | -           | 0.35        |
| 09/22/04   | -           | 0.39         | -             | -              | -           | 0.67          | -             | 0.50         | -             | -            | -           | -              | -             | -            | -           | 0.54        |
| 10/02/04   | -           | 0.16         | -             | -              | -           | 0.12          | -             | 0.09         | -             | -            | -           | -              | -             | -            | -           | 0.18        |
| 10/25/04   | -           | -            | -             | -              | 1232        | 1.4           | 1142          | 0.77         | 1113          | 1.2          | 1047        | 1.56           | 945           | 1.22         | 1023        | 0.89        |
| System cyc | led on B    |              | : 11/10/0     | )4             | _           |               |               |              |               |              |             |                | _             | _            | _           |             |
| 02/02/05   | -           | 0.56         | -             | -              | -           | 0.96          | -             | 1.03         | -             | -            | -           | -              | -             | 0.59         | -           | 1.14        |
| 03/17/05   | -           | 3.35         | -             | -              | -           | 0.87          | -             | 0.60         | -             | -            | -           | -              | -             | 0.64         | -           | 0.82        |
| System shu |             |              | B appro       | val: 03/17/    | 05          |               |               |              |               |              | _           | ı              |               | T            | ,           |             |
| 03/22/05   | 1115        | 4.01         | -             | -              | -           | 0.85          | -             | 0.88         | -             | -            | -           | -              | -             | 0.51         | -           | 0.39        |
| 03/31/05   | 0810        | 3.58         | 0810          | 2.44           | 0810        | 4.49          | 0810          | 2.82         | -             | -            | -           | -              | -             | -            | 0810        | 1.38        |

DO O2 respiration field-data.xls\22187 DO 7/19/2005

Table 3-4 Summary of Groundwater Geochemical Data at Site 22187 MCB Camp Pendleton, California

| Well       | Date                          | DO                   | Nitrate      | Sulfate                | Fe (II)             | CH4                 | ORP                       | CO2                | Alkalinity |
|------------|-------------------------------|----------------------|--------------|------------------------|---------------------|---------------------|---------------------------|--------------------|------------|
|            |                               | (mg/L)               | (mg/L)       | (mg/L)                 | (mg/L)              | (μg/L)              | (mV)                      | (ppm)              | (mg/L)     |
| MW4        | 6/12/1997                     | NA                   | <4           | 906                    | NA                  | NA                  | NA                        | NA                 | 1420       |
| MW4        | 10/28/1997                    | 7.4                  | <3.2         | 959                    | ND                  | <3                  | 75                        | NA                 | 1430       |
| MW4        | 2/6/1998                      | 5.21                 | <3.2         | 866                    | ND                  | <3                  | 148                       | NA                 | 1380       |
| MW4        | 4/6/1998                      | 10.93                | <3.2         | 1060                   | ND                  | 4.76                | 136                       | NA                 | 1430       |
| MW4        | 7/22/1998                     | 0.48                 | 20J1         | 1500                   | 0.15                | <3                  | 98.8                      | 27                 | 1700       |
| MW4        | 1/28/1999                     | 1.1                  | <40          | 2100                   | 0.05                | <3                  | NA                        | 41                 | 880        |
| MW5        | 6/11/1997                     | NA                   | <0.8         | 256                    | NA                  | NA                  | NA                        | NA                 | 567        |
| MW5        | 10/28/1997                    | 2                    | <0.8         | 257                    | 2.4                 | 547                 | -75                       | NA                 | 675        |
| MW5        | 2/6/1998                      | 0.64                 | <1           | 230                    | ND                  | 570                 | 110                       | NA                 | 611        |
| MW5        | 4/6/1998                      | 2.98                 | <0.5         | 151                    | 2.2                 | 1170                | -101                      | NA                 | 892        |
| MW5        | 7/21/1998                     | 0.14                 | <4           | 140                    | 1.31                | 740                 | -96.7                     | 28                 | 700        |
| MW5        | 1/28/1999                     | 0.35                 | <4           | 130                    | 1.97                | 1700                | NA                        | 36                 | 960        |
| MW5        | 4/14/2005                     | 1.471                | 4.2 J1       | 360                    | 0.061               | 5.8                 | -76.6¹                    | NA                 | 520        |
| MW6        | 6/11/1997                     | NA                   | <0.8         | 246                    | NA                  | NA                  | NA                        | NA                 | 713        |
| MW6        | 10/28/1997                    | 4.2                  | <0.8         | 223                    | 1.6                 | 39                  | -50                       | NA                 | 853        |
| MW6        | 2/6/1998                      | 0.88                 | <1           | 210                    | 2                   | 370                 | -22                       | NA                 | 799        |
| MW6        | 4/6/1998                      | 3.27                 | <0.8         | 190                    | 1.2                 | 8.75                | -60                       | NA                 | 662        |
| MW6        | 7/21/1998                     | 0.2                  | <4 .         | 200                    | 1.31                | 110                 | -32.5                     | 39                 | 780        |
| MW6        | 1/28/1999                     | 0.41                 | <4           | 250                    | 1.27                | 560                 | NA                        | 38                 | 1040       |
| MW6        | 4/14/2005                     | 0.311                | 9.3          | 240                    | < 0.05              | 29                  | -80.11                    | NA                 | 520        |
| MW7        | 6/12/1997                     | NA                   | <0.8         | 256                    | NA                  | NA                  | NA                        | NA                 | 691        |
| MW7        | 10/28/1997                    | 2.6                  | <0.8         | 245                    | ND                  | 76.1                | 85                        | NA                 | 861        |
| MW7        | 2/6/1998                      | 1.68                 | <1.0         | 230                    | ND                  | 52                  | 170                       | NA                 | 844        |
| MW7        | 4/6/1998                      | 1.56                 | <0.8         | 276                    | ND                  | 31                  | 177                       | NA                 | 773        |
| MW7        | 7/22/1998                     | 0.02                 | 3 J1         | 260                    | 0.02                | <3                  | 98.5                      | 30                 | 800        |
| MW7        | 1/28/1999                     | 0.42                 | <4           | 390                    | 0.0                 | 3J1                 | NA                        | 41                 | 880        |
| MW7        | 4/14/2005                     | 0.661                | 1.6 J1       | 250                    | 0.2                 | < 3                 | 741                       | NA                 | 250        |
| MW8        | 6/12/1997                     | NA                   | <2.0         | 513                    | NA                  | NA                  | NA                        | NA                 | 699        |
| MW8        | 10/28/1997                    | 4.45                 | <1.6         | 451                    | 0.3                 | 575                 | 15                        | NA                 | 733        |
| MW8        | 2/6/1998                      | 3.12                 | <1.6         | 401                    | ND                  | 690                 | 155                       | NA                 | 768        |
| MW8<br>MW8 | 4/6/1998                      | 8.85                 | <1.0         | 385                    | ND                  | 33                  | 96                        | NA                 | 781        |
| MW8        | 7/22/1998                     | 0.37                 | 3 J1         | 390                    | 0.38                | 190                 | 102                       | 36                 | 900        |
| MW8        | 1/28/1999<br><b>4/14/2005</b> | 0.5<br><b>3.46</b> ¹ | <8<br>7.0    | 460                    | 0.10                | 56                  | NA<br>100.71              | 16                 | 880        |
| MW9        | 6/11/1997                     |                      | 7.8          | 630                    | 0.17                | 8.1                 | 106.71                    | NA                 | 190        |
| MW9        | 10/28/1997                    | NA<br>2.7            | <0.8         | 242                    | NA                  | NA<br>100           | NA                        | NA                 | 558        |
| MW9        | 2/6/1998                      | 2.7<br>1.49          | <0.8         | 253                    | ND                  | 106                 | 35                        | NA                 | 626        |
| MW9        | 4/6/1998                      | 3.47                 | <1.0<br><1.6 | 340                    | ND                  | 370                 | -106                      | NA                 | 710        |
| MW9        | 7/21/1998                     | 0.03                 |              | 350                    | ND                  | 178                 | -163                      | NA                 | 666        |
| MW9        | 1/28/1999                     | 0.03                 | <4<br><2     | 210                    | 0.04                | 64                  | 87.6                      | 30                 | 620        |
| MW10       | 6/11/1997                     |                      |              | 300                    | 0.00                | 200                 | NA<br>NA                  | 29                 | 800        |
| MW10       | 2/6/1998                      | NA<br>NA             | <0.4<br>0.2  | 186                    | NA                  | NA<br>3100          | NA<br>NA                  | NA                 | 973        |
| MW10       | 4/6/1998                      | NA<br>NA             | 0.2<br>NA    | 52<br>NA               | NA                  | 3100                | NA                        | NA                 | 906        |
| MW10       |                               |                      |              | NA //<br>1/6/98 and re | NA NA               | NA<br>MW104         | NA                        | NA                 | NA         |
| MW10A      | 7/21/1998                     | 0.53                 | 3 J1         | 330                    |                     |                     | 00.0                      | 46                 | 0.40       |
| MW10A      | 1/28/1999                     | 0.53                 | <4           | 320                    | 0.35                | 39<br>40            | 92.3                      | 15                 | 840        |
| MW10A      | 4/14/2005                     | 0.421                | 3.3 J1       | 410                    | 0.30<br><b>0.18</b> | 49<br><b>&lt; 3</b> | NA<br>154.01              | 27                 | 880        |
| DO         | Dissolved Oxyg                | en                   | 3.3 01       | 410                    |                     |                     | 154.9¹<br>Parts per milli | NA<br>on by volume | 550        |
| Fe (11)    | Ferrous iron                  | , •                  |              |                        |                     | ma/i                | milligrams nei            |                    |            |

Fe (11) Ferrous iron

CH4 Methane

ORP Oxidation-reduction potential

CO<sub>2</sub> Carbon dioxide

Estimated value

Result is less than the CRDL but greater than the MDL J1

CRDL contract required detection limit

Bold indicates results from the most recent sampling event.

22187.XLS, Geochem

milligrams per liter

millivolts

Not available

micrograms per liter

method detection limit

mg/L

μg/L

mV

NA

MDL

<sup>&</sup>lt;sup>1</sup> Field measurement obtained during purging

Table 3-5
Biosparging/Bioventing Soil Gas Data for Site 22187
MCB Camp Pendleton, California

| Monitoring  |            | BSM            | P-1-6.5         |            |        | BSM            | P-2-7    |         |      | М              | W-5     |        | MW-6 |                |        |        |
|-------------|------------|----------------|-----------------|------------|--------|----------------|----------|---------|------|----------------|---------|--------|------|----------------|--------|--------|
| Location    | 20.5 ft fr | om BVW-        | -1; 10 ft fr    | om BSW-3   |        | 11.5 ft fro    | m BSW-   | 7       | 4.5  | ft from E      | 3VW-1/B | SW-2   |      | 16 ft fro      | m BSW- | 1      |
|             | Time       | O <sub>2</sub> | CO <sub>2</sub> | TVH        | Time   | O <sub>2</sub> | CO2      | TVH     | Time | O <sub>2</sub> | CO2     | TVH    | Time | O <sub>2</sub> | CO2    | TVH    |
| DATE        |            | (%)            | (%)             | (vmqq)     |        | (%)            | (%)      | (ppmv   |      | (%)            | (%)     | (vmqq) |      | (%)            | (%)    | (ymqq) |
| Baseline me | onitorir   | ng             |                 |            |        |                |          |         |      |                |         |        | •    |                |        |        |
| 04/04/01    | 1031       | <1             | 13.0            | 128.6      | Unal   | ble to o       | btain sa | ample   | 1111 | 10.5           | 4.4     | 59.1   | -    | -              | -      | -      |
| BV system   | startup    | : 04/04        | 1/01 11:        | 35         |        |                |          |         |      |                |         |        |      |                |        |        |
| 04/04/01    | 1247       | <1             | 12.7            | 22.1       | -      | -              | -        | -       | 1240 | 8.4            | 5.6     | 67.9   | -    | -              | •      | -      |
| 04/04/01    | 1347       | <1             | 12.2            | 26.0       | -      | -              | -        | -       | 1342 | 9.4            | 5.0     | 79.5   | -    | -              | •      | -      |
| 04/04/01    | 1443       | <1             | 10.8            | 27.8       | -      | -              | -        | -       | 1437 | 10.1           | 4.1     | 88.1   | -    | -              | •      | -      |
| 04/06/01    | 1038       | <1             | 12.7            | 37.2       | -      | -              | -        | -       | 1040 | 11.5           | 3.9     | 117.7  | -    | -              | •      | -      |
| 04/09/01    | 0806       | <1             | 12.2            | 21.9       | -      | -              | -        | -       | 0804 | 14.2           | 2.6     | 87.2   | -    | -              | •      | -      |
| BV system   | shut-of    | ff: 04/0       | 9/01 08         | :38        |        |                |          |         |      |                |         |        |      |                |        |        |
| BS system   |            | : 04/09        |                 |            |        |                |          |         |      |                |         |        |      |                |        |        |
| 04/09/01    | 1052       | <1             | 12.4            | 24.0       | -      | -              | •        | -       | 1104 | 19.9           | 1.6     | 313.4  | -    | -              | •      | -      |
| 04/09/01    | 1331       | 2.2            | 11.8            | 16.1       | -      | -              | •        | -       | 1342 | 20.2           | 8.0     | 354.1  | -    | -              | •      | -      |
| 04/10/01    | 0856       | 18.7           | 2.5             | 64.9       | -      | -              | -        | -       | 0857 | 20.5           | 0.3     | 405.2  | -    | -              | í      | -      |
| 04/11/01    | 1104       | 19.8           | 1.5             | 102.1      | -      | -              | -        | -       | 1037 | 20.9           | 0.2     | 303.1  | -    | -              | í      | -      |
| 04/16/01    | 1218       | 20.3           | 0.6             | 7.4        | -      | -              | -        | -       | 1150 | 20.9           | 0.1     | 177.9  | -    | -              | -      | -      |
| 04/20/01    | 1145       | 20.6           | 0.6             | 2.6        | -      | -              | -        | -       | 1130 | 20.9           | 0.4     | 352.0  | -    | -              | í      | -      |
| BS system   | shut do    | own/res        | piratio         | n testing: | 04/20/ | 01 12:3        | 35       |         |      |                |         |        |      |                |        |        |
| 04/20/01    | 1340       | 20.5           | 0.8             | 6.5        | -      | -              | •        | -       | 1337 | 20.6           | 0.4     | 222.0  | -    | -              | •      | -      |
| 04/20/01    | 1524       | 20.5           | 0.8             | 7.6        | -      | -              |          | -       | 1523 | 19.7           | 0.4     | 189.8  | -    | -              | ı      | -      |
| 04/23/01    | 0859       | 12.6           | 1.2             | 4.4        | -      | -              | •        | -       | 0855 | 13.9           | 0.6     | 61.3   | -    | -              | •      | -      |
| 04/30/01    | 1303       | 1.7            | 3.6             | 7.2        | -      | -              |          | -       | -    | -              | ı       | -      | -    | -              | ı      | -      |
| 07/11/01    | 1315       | <1             | <1              | 7.5        | -      | -              | -        | -       | 1326 | 14.5           | 2.6     | 59.9   | -    | -              | í      | -      |
| System star |            | 7/11/01        |                 |            |        |                |          |         |      |                |         |        |      |                |        |        |
| 09/25/01    | 1247       | 16.8           | 3.5             | 220        | -      | -              | -        | -       | 1240 | 20.9           | 0.4     | 140    | -    | -              | -      | -      |
| System shu  |            |                |                 | ndwater s  | amplin | g even         | t: 09/25 | /01 13: |      |                |         |        |      |                |        |        |
| 10/02/01    | 1255       | 0.7            | 7.8             | 140        | -      | -              | -        | -       | 1245 | 20.9           | 0.1     | 0      | -    | -              | -      | -      |
| System res  |            |                |                 |            |        |                |          |         |      |                |         |        |      |                |        |        |
| System cyc  |            |                |                 | 50         |        |                | 1        |         |      |                |         |        |      |                | 1      |        |
| 02/26/02    | 0815       | 15.6           | 1.2             | -          | -      | -              | -        | -       | 0809 | 19.5           | 0.25    | 1.2    | -    | -              | -      |        |
| System res  |            |                |                 |            |        |                |          |         |      |                |         |        |      |                |        |        |
| System cyc  |            |                |                 |            |        |                |          |         |      |                |         |        |      |                |        |        |
| System res  | tarted:    | 03/19/         | UZ 16:1         | ٥          |        |                |          |         |      |                |         |        |      |                |        |        |

# Table 3-5 Biosparging/Bioventing Soil Gas Data for Site 22187 MCB Camp Pendleton, California

| Monitoring |            | BSM            | P-1-6.5         |                   |               | BSM            | P-2-7           |                |      | M              | W-5             |        | MW-6 |                |        |        |
|------------|------------|----------------|-----------------|-------------------|---------------|----------------|-----------------|----------------|------|----------------|-----------------|--------|------|----------------|--------|--------|
| Location   | 20.5 ft fr | om BVW-        | -1; 10 ft fr    | om BSW-3          |               | 11.5 ft fro    | m BSW-          | 7              | 4.5  | ft from E      | BVW-1/B         | SW-2   |      | 16 ft fro      | m BSW- | 1      |
|            | Time       | O <sub>2</sub> | CO <sub>2</sub> | TVH               | Time          | O <sub>2</sub> | CO <sub>2</sub> | TVH            | Time | O <sub>2</sub> | CO <sub>2</sub> | TVH    | Time | O <sub>2</sub> | CO2    | TVH    |
| DATE       |            | (%)            | (%)             | (ppmv)            |               | (%)            | (%)             | (ppmv          |      | (%)            | (%)             | (ppmv) |      | (%)            | (%)    | (ppmv) |
| System cyc | led off:   | 03/28          | /02 10:3        | 30                |               |                |                 |                |      |                |                 |        |      |                |        |        |
| 03/28/02   | 1040       | 20.7           | 0.4             | 0.0               | -             | -              | -               | -              | 1045 | 20.9           | 0.0             | 0.0    | -    |                | -      | -      |
| 04/04/02   | 1021       | 2.1            | 3.8             | 0.0               | -             | -              | -               | -              | 1045 | 20.9           | 0.1             | 0      | -    | -              | -      | -      |
| System res |            |                |                 |                   |               |                |                 |                |      |                |                 |        |      |                |        |        |
| System shu |            | prior to       |                 | ndwater s         | <u>amplin</u> | g even         | t: 04/1         | <u>2/02 07</u> |      |                |                 |        |      |                |        |        |
| 04/22/02   | 1318       | <1             | 6.8             | -                 | -             | -              | -               | -              | 1314 | 17.2           | 8.0             | -      | -    | -              | -      | -      |
| 05/02/02   | -          | -              | -               | -                 | -             | -              | -               | -              | 955  | 18.7           | 0.35            | -      | -    | -              | -      | -      |
| System res |            |                |                 |                   |               |                |                 |                |      |                |                 |        |      |                |        |        |
| System cyc |            |                |                 |                   |               |                | 1               |                | 1    | · ·            |                 |        |      |                | ı      | ı      |
| 05/22/02   | 0805       | 5.4            | 2.8             | 0.0               | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| System res |            |                |                 |                   |               |                |                 |                |      |                |                 |        |      |                |        |        |
| System cyc |            |                |                 |                   |               |                |                 | 1              |      |                |                 |        |      |                |        | 1      |
| 05/30/02   | 1142       | 18.7           | 0.9             | >10K              | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| 06/24/02   | 1215       | 0.7            | 9.6             | 0.0               | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| System pul |            |                |                 |                   | 45            |                | 1               |                | 1    |                |                 |        |      |                | ı      | 1      |
|            | 1338       | 19.8           | 0.9             | 0.0               | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| System pul |            |                |                 |                   | 45            |                |                 | T              |      |                |                 |        |      |                | T      |        |
|            | 1045       | 7.5            | 9.5             | 0.0               | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| System pul |            |                |                 |                   | <u>55</u>     | ,              |                 |                |      |                |                 |        |      |                |        | •      |
| 07/26/02   | 0850       | 19.9           | 1.1             | 0.0               | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| System pul |            |                |                 | <u>/26/02 09:</u> | 00            |                |                 |                |      |                |                 |        |      |                |        |        |
| 08/02/02   | _          | 2.2            | >20             | -                 | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| System pul | sed BS     |                | , 9: 08         | <u>/02/02 11:</u> | 55            |                |                 |                |      |                |                 |        |      |                |        |        |
| 08/16/02   | 0852       | 19.2           | 0.9             | -                 | -             | -              | -               | -              | -    | -              | ī               | -      | -    | -              | -      | -      |
| System cyc | led off:   | 08/16          | /02 08:         | 58                |               |                |                 |                |      |                |                 |        |      |                |        |        |
| System cyc | led on     | <b>BSWs</b>    | 1-5, 9:         | 08/22/02          | 07:00         |                |                 |                |      |                |                 |        |      |                |        |        |
| System cyc | led off:   | 09/17          | /02 10:         | 55                | _             |                |                 | _              |      |                |                 | _      | _    |                |        |        |
| 09/17/02   | 1115       | 17.2           | 2.7             | -                 | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| 09/27/02   | 1035       | 1.6            | 5.7             | -                 | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |
| 10/15/02   | 0845       | 0.3            | >5              | -                 | -             | -              | -               | -              | -    | -              | 1               | -      | -    | -              | -      | -      |
| 10/25/02   | 0805       | 0.6            | 10.8            | -                 | -             | -              | -               | -              | -    | -              | -               | -      | -    | -              | -      | -      |

# Table 3-5 Biosparging/Bioventing Soil Gas Data for Site 22187 MCB Camp Pendleton, California

| Monitoring                 |                                                                                           | BSM         | P-1-6.5      |            |         | BSM         | P-2-7   |          |      | M              | W-5          |          | MW-6 |           |        |        |  |
|----------------------------|-------------------------------------------------------------------------------------------|-------------|--------------|------------|---------|-------------|---------|----------|------|----------------|--------------|----------|------|-----------|--------|--------|--|
| Location                   | 20.5 ft fr                                                                                | rom BVW     | -1; 10 ft fi | rom BSW-3  |         | 11.5 ft fro | m BSW-  | 7        | 4.5  | ft from E      | BVW-1/B      | SW-2     |      | 16 ft fro | m BSW- | 1      |  |
|                            | Time                                                                                      | 02          | CO2          | TVH        | Time    | 02          | CO2     | TVH      | Time | O <sub>2</sub> | CO2          | TVH      | Time | 02        | CO2    | TVH    |  |
| DATE                       |                                                                                           | (%)         | (%)          | (ppmv)     |         | (%)         | (%)     | (ppmv    |      | (%)            | (%)          | (vmqq)   |      | (%)       | (%)    | (vmqq) |  |
| System cyc                 | led on                                                                                    | BSWs        |              |            | 08:20   |             |         |          |      |                |              |          |      |           |        |        |  |
| 10/31/02                   | 1235                                                                                      | 19.1        | 1.2          | -          | -       | -           | -       | -        | -    | -              | -            | -        | -    | -         | -      | -      |  |
| 11/15/02                   | 0810                                                                                      | 20.6        | 0.0          | -          | -       | -           | -       | -        | -    | -              | -            | -        | -    | -         | -      | -      |  |
| 02/06/03                   | 0902                                                                                      | 18.4        | 0.4          | 0.0        | 907     | 15.5        | 0.6     | 0.0      | 0915 | 19.0           | 0.0          | 16.5     | 0911 | 19.0      | 0.0    | 0.0    |  |
| System shu                 | itdown                                                                                    | for res     | piratio      | n test: 02 | 2/06/03 | 09:20       |         |          |      |                |              |          |      |           |        | -      |  |
| 02/07/03                   | 1001                                                                                      | 18.8        | 0.3          | 0.0        | 936     | 16.4        | 0.6     | 2.1      | 0951 | 20.5           | 0.0          | 2.1      | 0945 | 20.9      | 0.0    | 0.0    |  |
| 02/10/03                   | 0823                                                                                      | 12.1        | 1.0          | 1.3        | 800     | 17.7        | 0.6     | 0.6      | 0818 | 19.1           | 0.0          | 13.2     | 0811 | 21.0      | 0.0    | 0.1    |  |
| 02/14/03                   | 0856                                                                                      | 3.2         | 2.5          | 4.9        | 0833    | 17.6        | 0.5     | 0        | 0848 | 20.1           | 0.0          | 3.5      | 0843 | 19.4      | 0.0    | 0.5    |  |
| System cyc                 | led on                                                                                    | <b>BSWs</b> | 1-5, 9:      | 2/17/03 1  | 12:30   |             |         |          |      |                |              |          |      |           |        |        |  |
| System shu                 |                                                                                           |             |              |            |         | g even      | t: 04/0 | 1/03 08: | :41  |                |              |          |      |           |        |        |  |
| System cyc                 |                                                                                           |             |              |            |         |             |         |          |      |                |              |          |      |           |        |        |  |
| 09/22/03                   | 1340                                                                                      | 20.9        | 0            | 0.3        | 1406    | 21          | 0.2     | 0.9      | -    | -              | -            | -        | -    | -         | -      | -      |  |
| System shu                 |                                                                                           |             |              |            |         |             |         |          | 21   | 1              |              | 1        |      |           | 1      |        |  |
| 09/24/03                   | 1200                                                                                      | 16.9        | 0.3          | 212        | 1212    | 21.1        | 0.3     | 0.4      | -    | -              | -            | -        | -    | -         | -      | -      |  |
| 09/29/03                   | 0940                                                                                      | 6.1         | 2.2          | 1.6        | 0952    | 20.9        | 0.3     | 2.3      | -    | -              | -            | -        | -    | -         | -      | -      |  |
| 10/06/03                   | 1036                                                                                      | 2.8         | 3.7          | 33.4       | 1047    | 20.5        | 0.6     | 7.4      | -    | -              | -            | -        | -    | -         | -      | -      |  |
| System cyc                 | led on                                                                                    |             |              | 11/06/03   | 12:30   |             | 1       |          |      |                |              |          |      |           | 1      |        |  |
| 03/19/04                   | -                                                                                         | 20.8        | 0.2          | -          |         | -           | -       | -        | -    | -              | -            | -        | -    | -         | -      | -      |  |
| System shu                 | <u>itdown</u>                                                                             |             |              | ndwater s  | amplin  | g even      | t: 03/1 | 9/04 09  | 00   |                |              | <u> </u> |      | 1         |        |        |  |
| 03/22/04                   | -                                                                                         | 20.4        | 0.1          | -          | -       | -           | -       | -        | -    | -              | -            | -        | -    | -         | -      | -      |  |
| 03/26/04                   | -                                                                                         | 17.1        | 0.2          | -          | -       | -           | -       | -        | -    | -              | -            | -        | -    | -         | -      | -      |  |
| 04/16/04                   | -                                                                                         | 3.0         | 2.4          | -          | - 0740  | -           | -       | -        | -    | -              | -            | -        | -    | -         | -      | -      |  |
| System cyc                 |                                                                                           |             |              |            |         |             | 4- 00/2 | 4/04.00/ | 20   |                |              |          |      |           |        |        |  |
| <b>System shu</b> 09/21/04 | itaown                                                                                    | 19.3        | 0.3          | luwater S  | ampiin  | ig even     | 1. 09/2 | 1/04 09  | JU   |                |              | 1        |      |           |        | 1      |  |
| 09/21/04                   |                                                                                           | 19.3        | 0.3          | -          | -       |             | -       | -        | -    | -              | <del>-</del> | -        | -    |           | -      | _      |  |
| 10/02/04                   |                                                                                           | 6.4         | 2.5          | _          | -       |             |         | _        |      |                | <u> </u>     |          |      |           |        | _      |  |
|                            |                                                                                           |             |              |            |         |             |         |          |      |                |              |          |      |           |        |        |  |
|                            | System cycled on BSWs 1-5, 9, 11: 11/10/04 System shut down with RWQCB approval: 03/17/05 |             |              |            |         |             |         |          |      |                |              |          |      |           |        |        |  |
| 03/31/05                   | 0810                                                                                      | 12.7        | 0.8          | 0.6        | 0810    | 21.5        | 0.1     | 0.5      | 810  | 17.7           | 0.3          | 0.7      | 0810 | 20.8      | 0.3    | 0.2    |  |
| 04/18/05                   | 1140                                                                                      | 2.5         | 2.6          | 0.0        | 1140    | 14.4        | 0.1     | 0.0      | 1140 | 17.5           | 0.8          | 0.0      | 1140 | 21.2      | 0.3    | 0.2    |  |
| 07/10/03                   | 1170                                                                                      | ۷.5         | ۷.0          | 0.0        | 1170    | 17.7        | 0.0     | 0.0      | 1170 | 17.0           | 0.0          | 0.0      | 1170 | 41.4      | 0.2    | 0.0    |  |

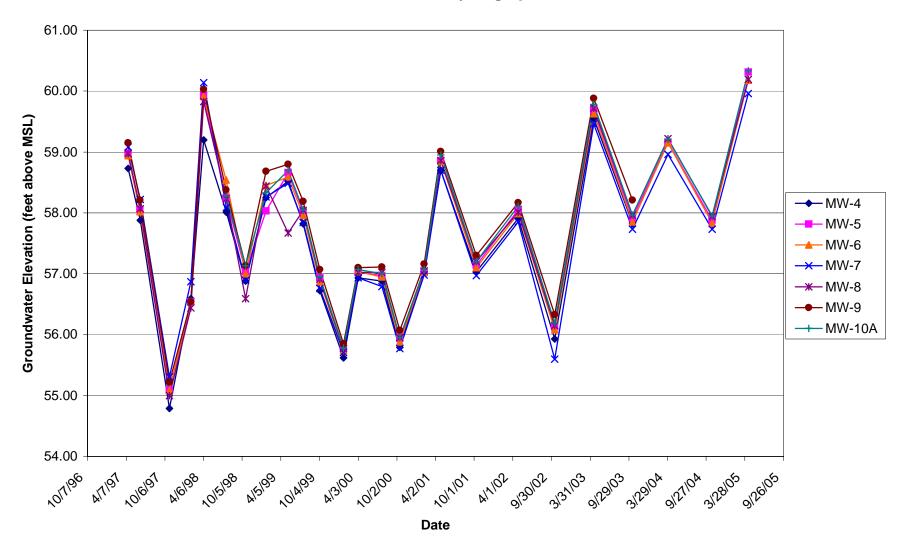
ft = feet

in H<sub>2</sub>O = inches of water

% = percent

 $O_2$  = oxygen

ppmv = parts per million by volume


CO<sub>2</sub> = carbon dioxide

TVH = total volatile hydrocarbons

Press = pressure

NM = not measured

Figure 3-1 Site 22187 Hydrograph



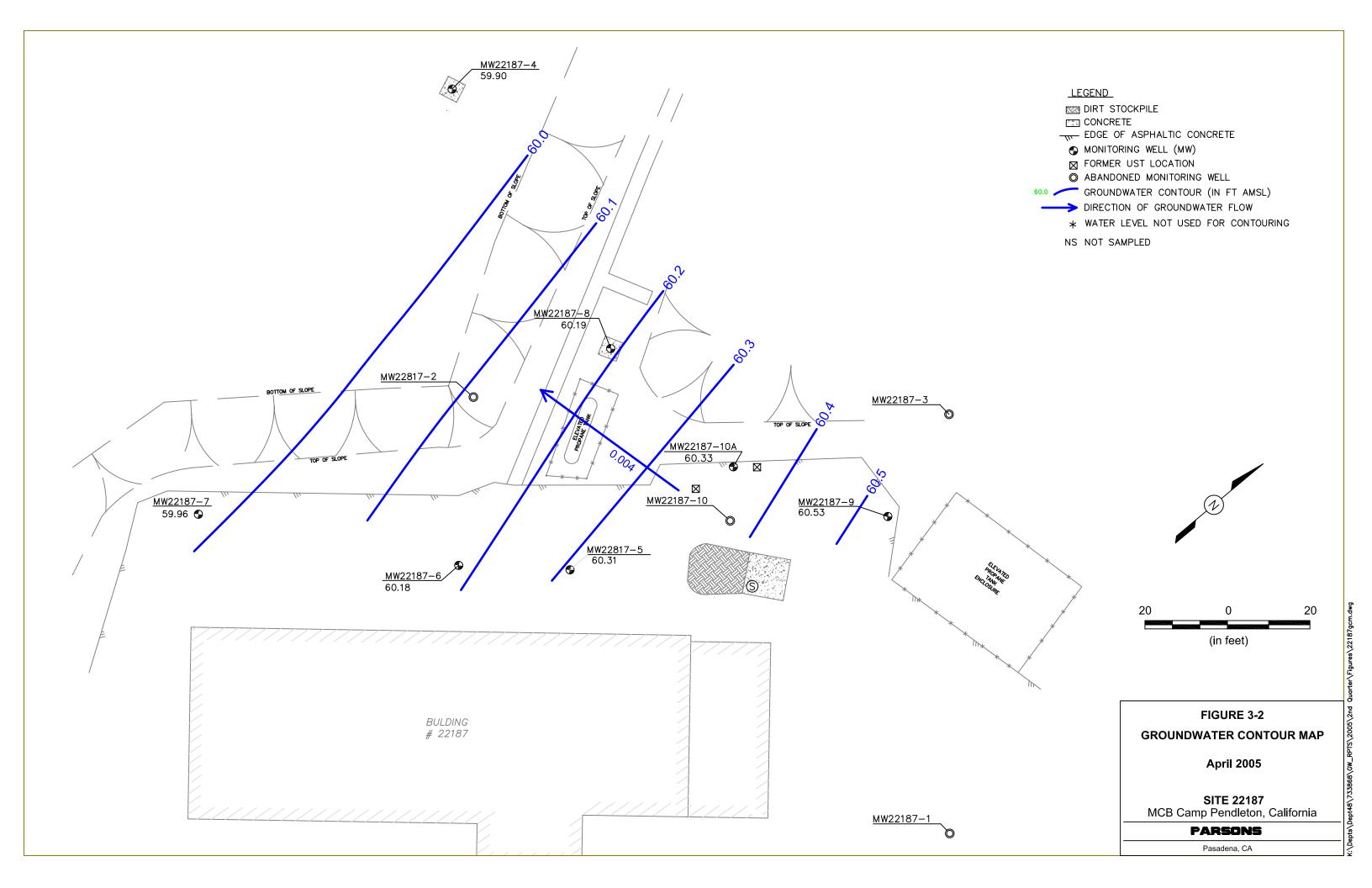



Figure 3-3
TPH-D Concentration vs Groundwater Elevation for Selected Well at Site 22187

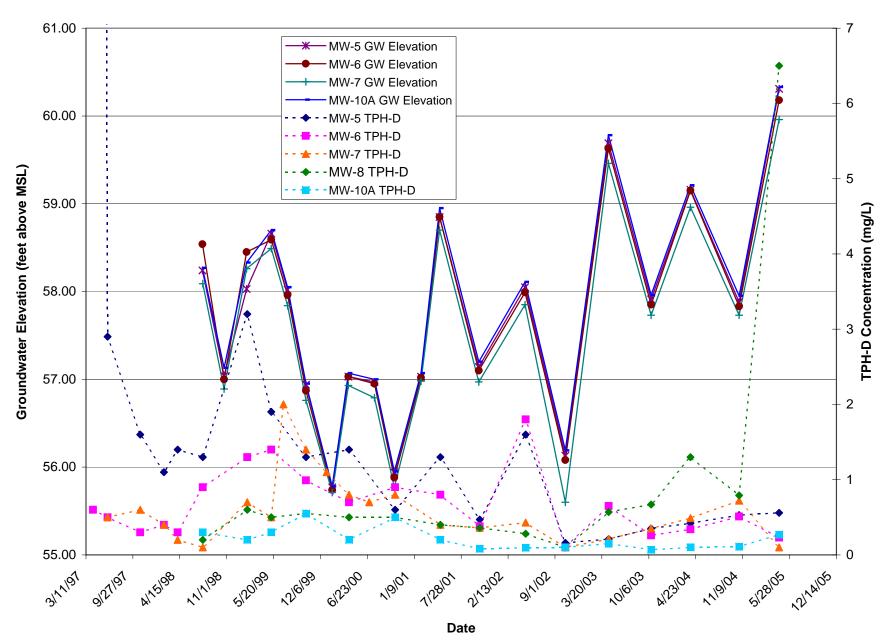
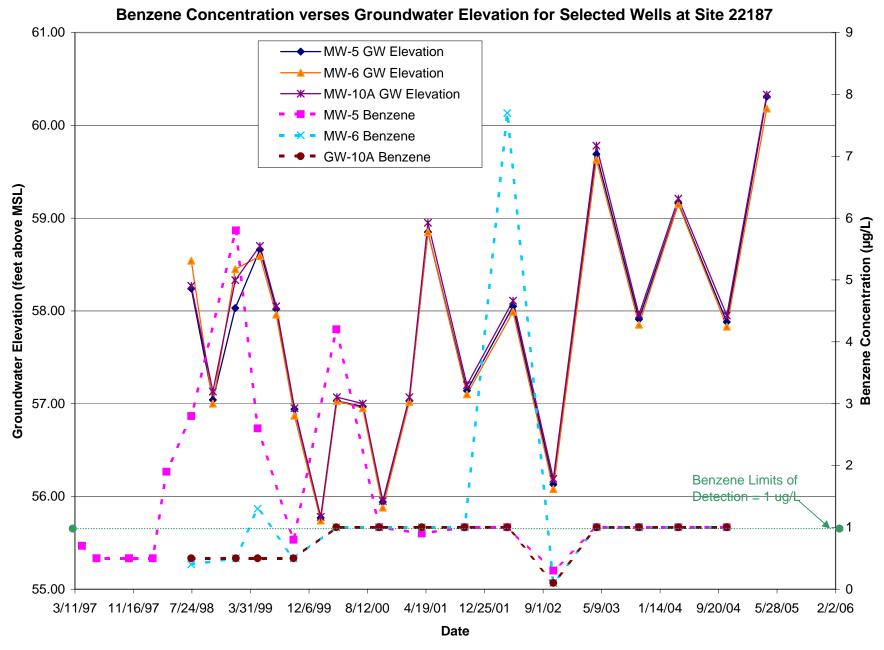




Figure 3-4



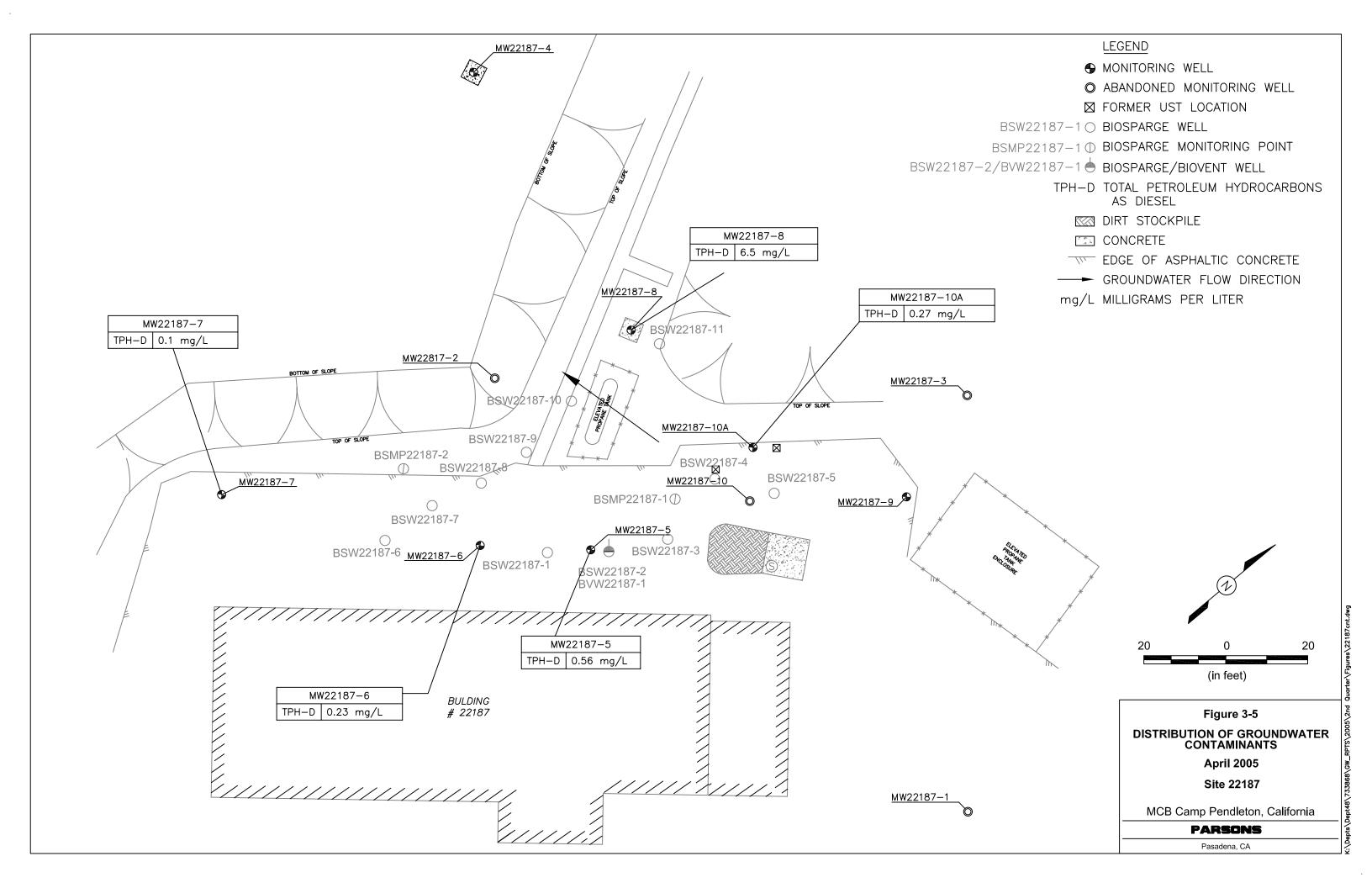
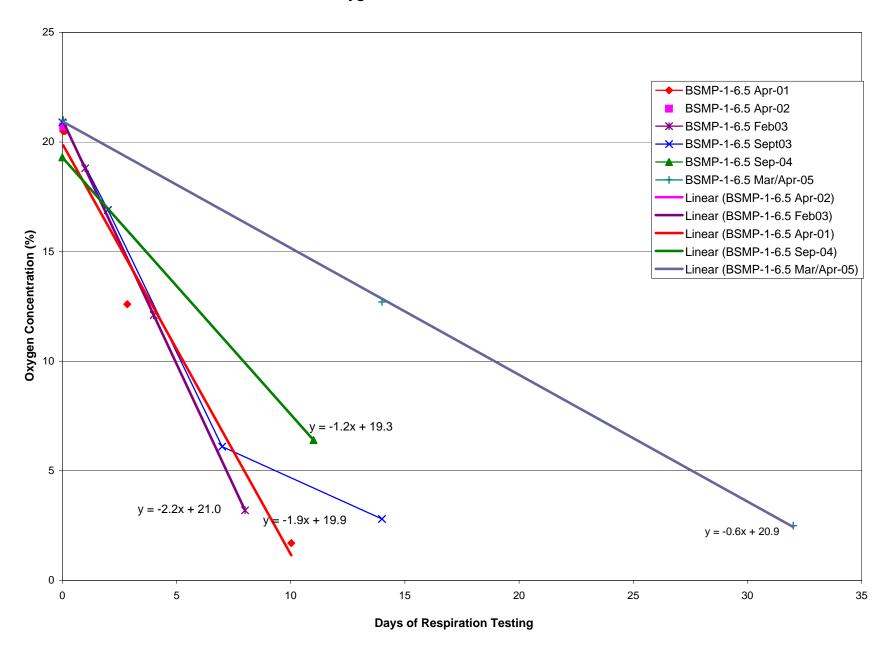




Figure 3-6
Oxygen Utilization at Site 22187



#### **SECTION 4**

### CONCLUSIONS AND RECOMMENDATIONS

The following section presents conclusions, recommendations and the project schedule for Site 22187.

#### 4.1 CONCLUSIONS

The following summarizes the results for the April 2005 groundwater monitoring event and BS operation at Site 22187.

- 1) The hydraulic gradient calculated for this site was 0.004 west. This is consistent with previous events.
- 2) TPH-D was again detected in five MWs at or above the secondary MCL cleanup goal of 0.1 mg/L. While most measured TPH-D concentrations were within the range of historical concentrations, MW22187-8 increased from 0.79 mg/L in October 2004 to 6.5 mg/L this event.
- 3) BTEX and MTBE were not analyzed this event because the cleanup goals have been met for these compounds in all MWs.
- 4) During recent monitoring, DO concentrations were only occasionally observed above 2 mg/L. Due to physical subsurface limitations and non-uniform air distribution, the biosparging has had limited success in increasing DO concentrations.
- 5) The geochemical data collected during this monitoring event present only weak evidence of anaerobic biodegradation within portions of the plume. It is likely that the active BS operation is currently counteracting the widespread formation of anaerobic biodegradation conditions.
- 6) Oxygen utilization rates measured at Site 22187 further decreased to 0.6%/day. These measurements indicate that residual contamination has been reduced and that the BS system may be nearing the end of its ability to remove residual vadose zone contamination near the former source area.

#### 4.2 **RECOMMENDATIONS**

Based on the above conclusions and monitoring data, the following are recommendations for Site 22187:

- 1) Discontinue operation of the BS blower and allow natural anaerobic biodegradation processes to resume at the site.
- 2) Perform one additional year of semiannual groundwater monitoring to insure that rebound in TPH-D concentrations does not occur and that the TPH-D plume is stable. Include analysis of geochemical parameters (e.g., sulfate, iron, methane, alkalinity) in one of these events to further evaluate anaerobic biodegradation.

- 3) After the rebound period, evaluate the potential for no further action based on the fact that primary MCLs have been met and achieving the secondary MCL for TPH-D may be impractical at the site.
- 4) If rebound is observed, continue annual groundwater monitoring each winter/spring (e.g., April).
- 5) If the primary MCLs continue to be met and TPH-D concentrations are not migrating, request no further action.

#### **SECTION 5**

#### REFERENCES

- California Regional Water Quality Control Board (RWQCB), San Diego Region, 2002, "Letter Report on the Pilot Biosparging and Bioventing Remediation System Installation & Startup Results for Site 22187, Marine Corps Base Camp Pendleton." Letter dated April 30.
- County of San Diego Department of Health Services, 2002, Site Assessment and Mitigation Manual.
- IT Corp., 1993, Underground Storage Tank Draft Site Assessment Report, Marine Corps Base Camp Pendleton, California.
- Leeson, Andrea, and R. E. Hinchee, 1997. *Soil Bioventing: Principles and Practice*. Lewis Publishers, Boca Raton, FL.
- Parsons, 2000a, Final Remediation Work Plan for Underground Storage Tank Site 22187, MCB Camp Pendleton, California, January 17.
- Parsons, 2000b, Response to Comments, Final Remediation Work Plans for Sites 1121, 1131, 2404, 2296, 22187, 43302, 53435, and H-49 at Marine Corps Base Camp Pendleton, California; Comments from Regional Water Quality Control Board Dated 16 May 2000, June 28.
- Parsons, 2001a, Letter Report on the Biosparging Remediation System Installation and Startup Results for Site 22187, Marine Corps Base Camp Pendleton, California, August 8.
- Parsons, 2001b, Operation & Maintenance (O&M) Manual for Bioventing and Biosparging Systems; Remediation Project: Underground Storage Tank Sites 1121, 2296, 22187, 43302, 53435, and H-49, Marine Corps Base, Camp Pendleton, California, July 3.
- United States Environmental Projection Agency (USEPA), 2004, *How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites*, 410-R-04-002, May 1995, updated May 2004.

# APPENDIX A HISTORICAL DATA

Table A-1 Historical Groundwater Elevations, Site 22187, MCB Camp Pendleton

| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |          | Well Head        | Depth to     |              | Product | Corrected GW                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|------------------|--------------|--------------|---------|-----------------------------------------|
| WELL DATE  MW1 4/16/97 68.72 10.92 ND 0.00 57.80  MW2 Abandoned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |                  | Water        | _            |         |                                         |
| WELL         DATE           MW1         4/16/97         68.72         10.92         ND         0.00         57.80           MW2         — Abandoned                                                                                                                                                    |                    | UNITS:   | (feet above MSL) | (feet)       | (feet)       |         | (feet above MSL)                        |
| MW1 4/16/97 68.72 10.92 ND 0.00 57.80  MW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WELL               | DATE     |                  |              |              | ` '     | (====================================== |
| MW2 MW3  MW4 4/16/97 63.50 4.77 ND 0.00 58.73  MW4 10/28/97 5.62 ND 0.00 57.88  MW4 10/28/97 8.71 ND 0.00 54.79  MW4 4/6/98 6.91 ND 0.00 55.59  MW4 4/6/98 4.30 ND 0.00 59.20  MW5 4/16/97 70.15 11.17 ND 0.00 58.98  MW5 10/28/97 12.10 ND 0.00 58.98  MW5 4/6/98 13.61 ND 0.00 55.59  MW5 4/6/98 13.61 ND 0.00 55.59  MW6 4/6/98 13.61 ND 0.00 55.54  MW6 4/16/97 70.45 11.51 ND 0.00 55.54  MW6 4/16/97 70.45 11.51 ND 0.00 56.54  MW6 4/16/97 70.45 11.51 ND 0.00 58.94  MW6 10/28/97 15.37 ND 0.00 58.94  MW6 10/28/97 15.37 ND 0.00 58.02  MW6 2/6/98 13.90 ND 0.00 55.08  MW6 4/6/98 10.54 ND 0.00 55.08  MW6 2/6/98 13.90 ND 0.00 55.58  MW7 4/17/97 70.11 11.37 ND 0.00 59.91  MW7 6/12/97 12.23 ND 0.00 59.91  MW7 6/12/97 12.23 ND 0.00 59.91  MW7 6/12/97 12.23 ND 0.00 59.91  MW7 4/6/98 13.58 ND 0.00 57.88  MW7 10/28/97 15.14 ND 0.00 58.74  MW7 10/28/97 15.14 ND 0.00 59.91  MW7 4/6/98 13.58 ND 0.00 54.97  MW7 4/6/98 13.58 ND 0.00 58.97  MW7 4/6/98 10.21 ND 0.00 58.97  MW8 6/12/97 12.09 13.12 ND 0.00 58.97  MW8 6/12/97 12.09 13.12 ND 0.00 58.97  MW8 10/28/97 17.09 ND 0.00 58.97  MW8 4/6/98 10.63 ND 0.00 59.80  MW8 4/6/98 13.24 ND 0.00 59.80  MW8 4/6/98 13.24 ND 0.00 59.83  MW9 4/16/97 69.78 10.63 ND 0.00 59.21  MW9 10/28/97 11.57 ND 0.00 58.27  MW9 10/28/97 11.57 ND 0.00 58.27  MW9 10/28/97 11.57 ND 0.00 58.97  MW9 10/28/97 11.57 ND 0.00 58.97  MW9 10/28/97 11.57 ND 0.00 58.27  MW9 10/28/97 11.57 ND 0.00 58.21  MW9 2/6/98 13.24 ND 0.00 56.54  MW9 4/16/97 69.78 10.63 ND 0.00 59.23  MW9 4/16/97 69.78 10.63 ND 0.00 59.23  MW9 6/11/97 11.57 ND 0.00 58.21  MW9 10/28/97 11.57 ND 0.00 56.54  MW9 10/28/97 11.57 ND 0.00 59.43  MW9 6/11/97 69.78 10.63 ND 0.00 59.43  MW9 6/11/97 69.74 10.31 ND 0.00 59.43  MW10 6/11/97 MW10 10/28/97                                                                                                                                                                                                                                                                                                                                  | MW1                | 4/16/97  | 68.72            | 10.92        | ND           | 0.00    | £77.00                                  |
| MW2 MW4  MW4  4/16/97  63.50  4.77  MW4  6/12/97  5.62  ND  0.00  57.88  MW4  10/28/97  8.71  ND  0.00  54.79  MW4  4/6/98  4.30  ND  0.00  55.59  MW5  4/16/97  70.15  11.17  ND  0.00  58.93  MW5  6/11/97  12.10  ND  0.00  58.05  MW5  10/28/97  15.06  ND  0.00  58.05  MW5  4/6/98  13.61  ND  0.00  58.05  MW5  4/6/98  10.22  ND  0.00  58.05  MW6  4/16/97  70.45  11.51  ND  0.00  58.09  MW6  4/16/97  12.43  ND  0.00  58.09  MW6  10/28/97  15.37  ND  0.00  58.09  MW6  2/6/98  13.90  ND  0.00  55.08  MW6  4/6/98  13.90  ND  0.00  55.08  MW6  4/6/98  10.21  11.37  ND  0.00  55.08  MW6  4/6/98  10.54  ND  0.00  58.74  MW7  6/12/97  11.137  ND  0.00  58.74  MW7  6/12/97  12.23  ND  0.00  58.74  MW7  6/12/97  15.14  ND  0.00  58.74  MW7  10/28/97  11.57  ND  0.00  58.97  MW8  10/28/97  11.57  ND  0.00  58.21  MW9  4/6/98  11.56  ND  0.00  59.83  MW9  4/16/97  69.78  10.63  ND  0.00  59.83  MW9  4/16/97  69.78  10.63  ND  0.00  59.83  MW9  4/16/97  69.78  10.63  ND  0.00  59.83  MW9  4/16/98  10.63  ND  0.00  59.83  MW9  4/16/98  10.64  ND  0.00  59.83  MW9  4/16/98  10.63  ND  0.00  59.83  MW9  4/16/98  10.60  ND  0.00  59.83  MW9  4/16/98  10.60  ND  0.00  59.83  MW9  4/16/98  10.60  ND  0.00  59.83  MW0  4/16/97  69.74  10.31  ND  0.00  59.943  MW10  10/28/97                                                                               | _                  |          |                  |              |              | 0.00    | 57.80                                   |
| MW4 4/16/97 63.50 4.77 ND 0.00 58.73 MW4 6/12/97 5.62 ND 0.00 57.88 MW4 10/28/97 8.71 ND 0.00 54.79 MW4 2/6/98 6.91 ND 0.00 54.79 MW4 4/6/98 4.30 ND 0.00 59.20 MW5 4/16/97 70.15 11.17 ND 0.00 58.93 MW5 10/28/97 12.10 ND 0.00 58.05 MW5 10/28/97 15.06 ND 0.00 58.05 MW5 10/28/97 15.06 ND 0.00 55.09 MW6 4/16/98 10.022 ND 0.00 58.94 MW6 6/11/97 70.45 11.51 ND 0.00 59.93 MW6 6/11/97 12.43 ND 0.00 58.94 MW6 10/28/97 15.37 ND 0.00 58.02 MW6 4/6/98 13.90 ND 0.00 58.02 MW6 4/6/98 13.90 ND 0.00 58.02 MW6 4/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 13.90 ND 0.00 59.91 MW7 4/17/97 70.11 11.37 ND 0.00 59.91 MW7 4/17/97 70.11 11.37 ND 0.00 59.91 MW7 4/17/97 12.23 ND 0.00 59.91 MW7 2/6/98 13.58 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 59.91 MW7 2/6/98 13.58 ND 0.00 54.97 MW7 2/6/98 13.58 ND 0.00 54.97 MW7 2/6/98 13.58 ND 0.00 58.97 MW7 4/6/98 13.58 ND 0.00 58.97 MW8 6/12/97 11.51 ND 0.00 58.97 MW8 6/12/97 11.51 ND 0.00 58.97 MW8 6/12/97 11.51 ND 0.00 59.80 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 11.57 ND 0.00 58.97 MW8 6/12/97 11.57 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 4/6/98 13.24 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/98 9.75 ND 0.00 59.43 MW9 10/28/97 11.60 ND 0.00 59.43 MW9 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |          |                  |              |              |         | •                                       |
| MW4 4/16/97 63.50 4.77 ND 0.00 58.73 MW4 10/28/97 5.62 ND 0.00 57.88 MW4 10/28/97 8.71 ND 0.00 54.79 MW4 2/6/98 6.91 ND 0.00 56.59 MW4 4/6/98 4.30 ND 0.00 59.20 MW5 4/16/97 70.15 11.17 ND 0.00 58.98 MW5 6/11/97 15.06 ND 0.00 58.05 MW5 4/6/98 13.61 ND 0.00 55.09 MW5 4/6/98 13.61 ND 0.00 59.93 MW6 4/16/97 70.45 11.51 ND 0.00 59.93 MW6 4/16/97 70.45 11.51 ND 0.00 59.93 MW6 6/11/97 12.43 ND 0.00 58.02 MW6 10/28/97 15.37 ND 0.00 58.02 MW6 10/28/97 15.37 ND 0.00 55.08 MW6 4/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 13.90 ND 0.00 55.08 MW7 6/12/97 12.23 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 4/6/98 13.58 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 59.80 MW8 6/12/97 14.02 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 58.21 MW9 4/16/98 13.24 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 59.83 MW9 2/6/98 13.24 ND 0.00 59.43 MW9 10/28/97 11.60 ND 0.00 59.43 MW9 10/28/97 11.60 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MW3                |          |                  | A            | bandoned     |         |                                         |
| MW4 6/12/97 5.62 ND 0.00 57.88 MW4 10/28/97 8.71 ND 0.00 54.79 MW4 4/6/98 6.91 ND 0.00 56.59 MW5 4/16/97 70.15 11.17 ND 0.00 58.98 MW5 6/11/97 12.10 ND 0.00 58.05 MW5 10/28/97 15.06 ND 0.00 58.05 MW5 2/6/98 13.61 ND 0.00 56.54 MW6 4/16/97 70.45 11.51 ND 0.00 58.94 MW6 6/11/97 70.45 11.51 ND 0.00 58.94 MW6 6/11/97 12.43 ND 0.00 58.92 MW6 6/11/97 12.43 ND 0.00 58.02 MW6 2/6/98 13.90 ND 0.00 55.08 MW6 2/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 10.22 ND 0.00 56.55 MW6 4/6/98 13.90 ND 0.00 56.55 MW6 4/6/98 13.90 ND 0.00 56.55 MW6 4/6/98 13.90 ND 0.00 56.55 MW7 4/17/97 70.11 11.37 ND 0.00 59.91 MW7 4/17/97 70.11 11.37 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 58.74 MW7 10/28/97 15.15 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 6/12/97 17.09 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 59.80 MW8 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 2/6/98 13.24 ND 0.00 59.83 MW9 4/16/97 69.74 10.31 ND 0.00 59.83 MW9 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW4                |          | 63.50            | 4.77         | ND           | 0.00    | 58 73                                   |
| MW4 10/28/97 8.71 ND 0.00 54.79 MW4 4/6/98 6.91 ND 0.00 56.59 MW5 4/16/97 70.15 11.17 ND 0.00 59.20 MW5 6/11/97 12.10 ND 0.00 58.05 MW5 10/28/97 15.06 ND 0.00 55.09 MW5 2/6/98 13.61 ND 0.00 55.59 MW6 4/16/97 70.45 11.51 ND 0.00 59.93 MW6 6/11/97 12.43 ND 0.00 58.94 MW6 10/28/97 15.37 ND 0.00 58.02 MW6 10/28/97 15.37 ND 0.00 58.02 MW6 2/6/98 13.90 ND 0.00 56.55 MW6 2/6/98 13.90 ND 0.00 56.55 MW7 4/17/97 70.11 11.37 ND 0.00 56.55 MW7 4/17/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 57.88 MW7 4/6/98 13.58 ND 0.00 57.88 MW7 4/6/98 13.58 ND 0.00 54.97 MW7 10/28/97 15.14 ND 0.00 54.97 MW7 10/28/97 15.14 ND 0.00 54.97 MW7 4/6/98 13.58 ND 0.00 54.97 MW8 10/28/97 14.02 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 2/6/98 13.24 ND 0.00 59.83 MW9 6/11/97 17.09 ND 0.00 59.83 MW9 6/11/97 17.09 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.21 MW9 10/28/97 14.56 ND 0.00 59.22 MW9 4/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 13.24 ND 0.00 59.23 MW9 6/11/97 11.57 ND 0.00 59.23 MW9 6/11/97 11.57 ND 0.00 59.23 MW9 6/11/97 11.57 ND 0.00 59.23 MW9 10/28/97 14.56 ND 0.00 59.23 MW9 2/6/98 13.24 ND 0.00 59.23 MW9 6/11/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW4                |          |                  | 5.62         | ND           |         | 57.88                                   |
| MW4 4/6/98 4,30 ND 0.00 56.59 MW5 4/16/97 70.15 11.17 ND 0.00 59.20 MW5 6/11/97 12.10 ND 0.00 58.98 MW5 10/28/97 15.06 ND 0.00 58.05 MW5 10/28/97 15.06 ND 0.00 55.09 MW5 4/6/98 13.61 ND 0.00 56.54 NM 6 4/16/97 70.45 11.51 ND 0.00 56.54 NM 6 6/11/97 12.43 ND 0.00 58.94 MW6 10/28/97 15.37 ND 0.00 58.02 MW6 2/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 13.90 ND 0.00 56.55 MW7 4/17/97 70.11 11.37 ND 0.00 56.55 MW7 6/12/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 57.88 MW7 6/12/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 4/6/98 13.58 ND 0.00 54.97 MW7 4/6/98 13.58 ND 0.00 54.97 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.83 MW9 6/11/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 69.78 10.63 ND 0.00 59.21 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 13.24 ND 0.00 59.43 MW10 6/11/97 69.74 10.31 ND 0.00 59.4 | MW4                | 10/28/97 |                  | 8.71         | ND           |         | 54.79                                   |
| MWS 4/16/97 70.15 11.17 ND 0.00 59.20 MWS 6/11/97 12.10 ND 0.00 58.98 MWS 10/28/97 15.06 ND 0.00 55.09 MWS 2/6/98 13.61 ND 0.00 56.54 MW6 4/16/97 70.45 11.51 ND 0.00 58.94 MW6 6/11/97 12.43 ND 0.00 58.94 MW6 10/28/97 15.37 ND 0.00 58.02 MW6 10/28/97 15.37 ND 0.00 55.08 MW6 10/28/97 15.37 ND 0.00 55.08 MW6 4/6/98 13.90 ND 0.00 55.58 MW6 4/6/98 13.90 ND 0.00 55.58 MW7 4/17/97 70.11 11.37 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 2/6/98 13.58 ND 0.00 57.88 MW7 4/6/98 13.58 ND 0.00 57.88 ND 0.00 57.88 MW7 2/6/98 13.58 ND 0.00 58.97 MW8 6/12/97 15.14 ND 0.00 58.97 MW8 6/12/97 15.14 ND 0.00 58.97 MW8 6/12/97 15.14 ND 0.00 58.97 MW8 6/12/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 71.09 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 10/28/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 2/6/98 15.65 ND 0.00 58.21 MW9 4/16/98 15.65 ND 0.00 58.21 MW9 4/16/98 13.24 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 58.21 MW9 4/6/98 13.24 ND 0.00 58.21 MW9 4/6/98 13.24 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 4/16/98 ND 0.00 59.43 MW10 4/16/98 ND 0.00 59.43 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 4/16/98 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 4/16/98 ND 0.00 59.43 MW10 4/16/ | MW4                |          |                  | 6.91         | ND           |         | 56.59                                   |
| MWS 10/28/97 15.06 ND 0.00 58.98 MWS 10/28/97 15.06 ND 0.00 58.05 MWS 2/6/98 13.61 ND 0.00 56.54 MWS 4/6/98 10.22 ND 0.00 59.93 MW6 6/11/97 70.45 11.51 ND 0.00 58.94 MW6 10/28/97 15.37 ND 0.00 58.02 MW6 2/6/98 13.90 ND 0.00 55.08 MW6 2/6/98 13.90 ND 0.00 56.55 MW7 4/17/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 2/6/98 13.58 ND 0.00 54.97 MW7 4/6/98 13.58 ND 0.00 54.97 MW8 6/12/97 13.12 ND 0.00 59.80 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 6/12/97 17.09 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 4/6/98 15.65 ND 0.00 58.97 MW8 4/6/98 15.65 ND 0.00 59.83 MW8 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/98 13.24 ND 0.00 59.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 13.24 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141.W.4<br>3.631/5 |          | 50 LC            | 4,30         | ND           |         |                                         |
| MW5 10/28/97 15.06 ND 0.00 58.05 MW5 2/6/98 13.61 ND 0.00 55.09 MW5 2/6/98 13.61 ND 0.00 56.54 MW6 4/16/97 70.45 11.51 ND 0.00 58.94 MW6 6/11/97 12.43 ND 0.00 58.02 MW6 10/28/97 15.37 ND 0.00 55.08 MW6 2/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 10.54 ND 0.00 59.91 MW7 6/12/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 54.97 MW7 2/6/98 13.58 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 59.80 MW8 4/16/97 72.09 13.12 ND 0.00 58.07 MW8 6/12/97 14.02 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 4/6/98 15.65 ND 0.00 55.00 MW8 4/6/98 12.26 ND 0.00 55.00 MW8 4/6/98 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 4/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAN                |          | 70.15            | 11.17        | ND           | 0.00    | 58.98                                   |
| MWS 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                | 0/11/9/  |                  | 12.10        |              | 0.00    | 58.05                                   |
| MWS 4/6/98 10.22 ND 0.00 56.54 MW6 4/16/97 70.45 11.51 ND 0.00 58.94 MW6 6/11/97 12.43 ND 0.00 58.02 MW6 10/28/97 15.37 ND 0.00 55.08 MW6 2/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 10.54 ND 0.00 56.55 MW7 4/17/97 70.11 11.37 ND 0.00 58.74 MW7 6/12/97 12.23 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 54.97 MW7 4/6/98 13.58 ND 0.00 54.97 MW8 4/16/97 72.09 13.12 ND 0.00 59.80 MW8 4/16/97 72.09 13.12 ND 0.00 58.80 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 6/12/97 17.09 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 4/6/98 15.65 ND 0.00 58.07 MW8 4/6/98 15.65 ND 0.00 55.00 MW8 4/6/98 15.65 ND 0.00 55.00 MW8 4/6/98 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.21 MW9 10/28/97 14.56 ND 0.00 59.22 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW/S               | 10/20/97 |                  | 15.06        |              |         | 55.09                                   |
| MW6 4/16/97 70.45 11.51 ND 0.00 58.94 MW6 10/28/97 15.37 ND 0.00 55.08 MW6 2/6/98 13.90 ND 0.00 55.08 MW7 4/17/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 2/6/98 13.58 ND 0.00 54.97 MW7 4/6/98 13.58 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 4/6/98 15.65 ND 0.00 58.07 MW8 4/6/98 15.65 ND 0.00 58.07 MW8 4/6/98 15.65 ND 0.00 56.44 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.15 MW9 10/28/97 11.57 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97 NW10 10/28/97 MW10 10/28/97 ND 0.00 59.43 MW10 10/28/97 NW10 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |                  | 13.61        | ND           | 0.00    | 56. <b>5</b> 4                          |
| MW6 6/11/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW6                |          | 70.46            |              |              |         | 59.93                                   |
| MW6 10/28/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |          | 70,45            | 11.51        |              | 0.00    | 58.94                                   |
| MW6 2/6/98 13.90 ND 0.00 55.08 MW6 4/6/98 10.54 ND 0.00 59.91 MW7 4/17/97 70.11 11.37 ND 0.00 58.74 MW7 6/12/97 12.23 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 54.97 MW7 2/6/98 13.58 ND 0.00 54.97 MW7 4/6/98 10.31 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 59.80 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 10/28/97 17.09 ND 0.00 55.00 MW8 2/6/98 15.65 ND 0.00 55.00 MW8 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.15 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 59.43 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW6                | 10/28/97 |                  | 12.43        |              |         | 58.02                                   |
| MW6 4/6/98 10.54 ND 0.00 59.91 MW7 4/17/97 70.11 11.37 ND 0.00 59.91 MW7 6/12/97 12.23 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 2/6/98 13.58 ND 0.00 54.97 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 17.09 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 2/6/98 15.65 ND 0.00 55.00 MW8 4/6/98 15.65 ND 0.00 55.00 MW8 4/6/98 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.25 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 4/6/98 13.24 ND 0.00 56.54 MW9 4/6/98 MW9 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 MM10 10/28/97 MM10 10/28/97 MM10 10/28/97 | MW6                | 2/6/98   |                  | 12.37        |              |         | 55.08                                   |
| MW7 4/17/97 70.11 11.37 ND 0.00 58.74 MW7 6/12/97 12.23 ND 0.00 58.74 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 2/6/98 13.58 ND 0.00 54.97 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 2/6/98 15.65 ND 0.00 55.00 MW8 4/6/98 15.65 ND 0.00 56.44 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 1 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.21 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |          |                  | 13.90        |              | 0.00    |                                         |
| MW7 6/12/97 12.23 ND 0.00 57.88 MW7 10/28/97 15.14 ND 0.00 57.88 MW7 2/6/98 13.58 ND 0.00 54.97 MW7 4/6/98 10.31 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 2/6/98 15.65 ND 0.00 55.00 MW8 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.15 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW7                | 4/17/97  | 70.11            | 10.34        |              |         | 59.91                                   |
| MW7 10/28/97 15.14 ND 0.00 54.97 MW7 2/6/98 13.58 ND 0.00 54.97 MW7 4/6/98 10.31 ND 0.00 56.53 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 2/6/98 15.65 ND 0.00 55.00 MW8 4/6/98 12.26 ND 0.00 56.44 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.15 MW9 6/11/97 11.57 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 56.54 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |          | 70.11            | 11.37        |              | 0.00    |                                         |
| MW7 2/6/98 13.58 ND 0.00 54.97 MW7 4/6/98 10.31 ND 0.00 59.80 MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 55.00 MW8 2/6/98 15.65 ND 0.00 55.44 MW8 4/6/98 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.15 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 1 11.60 ND 0.00 59.43 MW10 10/28/97 1 11.60 ND 0.00 58.14 MW10 10/28/97 1 11.60 ND 0.00 58.14 MW10 2/6/98 1 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW7                | 10/28/97 |                  | 15.14        |              | 0.00    | 57.88                                   |
| MW7 4/6/98 10.31 ND 0.00 59.80 MW8 4/16/97 72.09 13.12 ND 0.00 59.80 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 58.07 MW8 2/6/98 15.65 ND 0.00 56.44 MW8 4/6/98 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.15 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW7                | 2/6/98   |                  | 13.14        |              |         |                                         |
| MW8 4/16/97 72.09 13.12 ND 0.00 58.97 MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 55.00 MW8 2/6/98 15.65 ND 0.00 56.44 MW8 4/6/98 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.83 MW9 6/11/97 11.57 ND 0.00 59.15 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 1 1.60 ND 0.00 59.43 MW10 10/28/97 1 1.60 ND 0.00 58.14 MW10 10/28/97 1 1.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW7                |          |                  |              |              | 0.00    | 56.53                                   |
| MW8 6/12/97 14.02 ND 0.00 58.97 MW8 10/28/97 17.09 ND 0.00 55.00 MW8 2/6/98 15.65 ND 0.00 56.44 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.15 MW9 10/28/97 11.57 ND 0.00 59.15 MW9 10/28/97 14.56 ND 0.00 59.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW8                |          | 72.09            | 13 12        |              |         | 59.80                                   |
| MW8 10/28/97 17.09 ND 0.00 55.00 MW8 2/6/98 15.65 ND 0.00 56.44 12.26 ND 0.00 56.44 12.26 ND 0.00 59.83 MW9 4/16/97 69.78 10.63 ND 0.00 59.15 MW9 10/28/97 11.57 ND 0.00 59.15 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW8                |          |                  | 14.02        |              | 0.00    | 58.97                                   |
| MW8 2/6/98 15.65 ND 0.00 56.44  MW8 4/6/98 12.26 ND 0.00 59.83  MW9 4/16/97 69.78 10.63 ND 0.00 59.15  MW9 6/11/97 11.57 ND 0.00 58.21  MW9 10/28/97 14.56 ND 0.00 55.22  MW9 2/6/98 13.24 ND 0.00 56.54  MW9 4/6/98 9.75 ND 0.00 56.54  MW10 4/16/97 69.74 10.31 ND 0.00 59.43  MW10 6/11/97 11.60 ND 0.00 59.43  MW10 10/28/97 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW8                |          |                  |              |              |         | 38.07<br>55.00                          |
| MW8       4/6/98       12.26       ND       0.00       59.83         MW9       4/16/97       69.78       10.63       ND       0.00       59.15         MW9       10/28/97       11.57       ND       0.00       58.21         MW9       10/28/97       14.56       ND       0.00       55.22         MW9       2/6/98       13.24       ND       0.00       56.54         MW9       4/6/98       9.75       ND       0.00       60.03         MW10       4/16/97       69.74       10.31       ND       0.00       59.43         MW10       10/28/97       1       1       1       1       1         MW10       2/6/98       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW8                |          |                  | 15.65        | ND           |         |                                         |
| MW9 4/16/97 69.78 10.63 ND 0.00 59.15 MW9 6/11/97 11.57 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 58.21 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 56.54 MW10 4/16/97 69.74 10.31 ND 0.00 60.03 MW10 6/11/97 11.60 ND 0.00 59.43 MW10 10/28/97 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW8                |          |                  |              |              | 0.00    |                                         |
| MW9 6/11/97 11.57 ND 0.00 58.21 MW9 10/28/97 14.56 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 55.22 MW9 4/6/98 9.75 ND 0.00 60.03 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 6/11/97 11.60 ND 0.00 58.14 MW10 10/28/97 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW9                |          | 69.78            |              |              |         | 50.15                                   |
| MW9 10/28/97 14.56 ND 0.00 55.22 MW9 2/6/98 13.24 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 60.03 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW9                | 6/11/97  |                  | 11,57        |              |         | 58 21                                   |
| MW9 2/6/98 13.24 ND 0.00 56.54 MW9 4/6/98 9.75 ND 0.00 60.03 MW10 4/16/97 69.74 10.31 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 59.43 MW10 10/28/97 11.60 ND 0.00 58.14 MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW9                |          |                  | 14,56        |              |         | 55.22                                   |
| MW10 4/16/97 69.74 10.31 ND 0.00 60.03<br>MW10 6/11/97 11.60 ND 0.00 59.43<br>MW10 10/28/97 11.60 ND 0.00 58.14<br>MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW9                |          |                  | 13.24        |              |         | 56.54                                   |
| MW10 4/16/97 69.74 10.31 ND 0.00 59.43<br>MW10 6/11/97 11.60 ND 0.00 58.14<br>MW10 10/28/97 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MWA                | 4/6/98   |                  | <b>9.7</b> 5 |              | 0.00    |                                         |
| MW10 6/11/9/ 11.60 ND 0.00 58.14<br>MW10 10/28/97 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |          | 69.74            | 10.31        |              |         |                                         |
| MW10 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MMIO               | 6/11/97  |                  | 11,60        | ŊD           |         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATO               |          |                  |              |              |         | [-'                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW10<br>MW10       |          |                  | i            | 1            |         | 1                                       |
| Explanation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 4/6/98   | <del></del>      | <u>_</u>     | <del>'</del> | 1       |                                         |

planation:

MW10 contained free product and was not measured

ND = Not detected

Table A-2 Historical Hydrocarbons in Groundwater, Site 22187, MCB Camp Pendleton

|        | CONS     | STITUENT: |               |               | Benzene      | Toluene         | Ethylbenzene | Xylenes             |
|--------|----------|-----------|---------------|---------------|--------------|-----------------|--------------|---------------------|
|        |          | METHOD:   | M8015<br>LUFT | M8015<br>LUFT | EPA-8020     | EPA-8020        | EPA-8020     | EPA-8020            |
|        |          | UNTTS:    | mg/L          | mg/L          | μg/L         | μg/L            | цgЛ          | μg/L                |
| WELL S |          | DATE      |               |               |              |                 |              |                     |
| B4     | 114      | 4/14/97   | 9             | <3            | <0.5         | <0.5            | <0,5         | <1.5                |
| B5     | 126      | 4/14/97   | <0.5          | <0.5          | <b>⊲0</b> .5 | <0.5            | <0.5         | <1.5                |
| MWI    | 172      | 4/18/97   | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW4    | 360      | 6/12/97   | <0.5          | <0.5          | <0.5         | <0.5            | ≪0.5         | <1.5                |
| MW4    | 455      | 10/28/97  | <0.5          | <0.5          | <b>⊲</b> 0.5 | <0.5            | <0.5         | <1.5                |
| MW4    | 537      | 2/6/98    | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW4    | 538      | 2/6/98    | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW4    | 588      | 4/6/98    | <0.5          | <0,5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW5    | 096      | 4/10/97   | 63            | NA            | 0.7          | <0.5            | 14.5         | 4.1                 |
| MW5    | 345      | 6/11/97   | 2.9           | 0.7           | <0.5         | <0.5            | 1.0          | <1.5                |
| MW5    | 452      | 10/28/97  | 1.6           | <0.5          | <0,5         | <0.5            | <0.5         | <1.5                |
| MW5    | 533      | 2/6/98    | I.1           | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW5    | 585      | 4/6/98    | 1.4           | <0.5          | 1.9          | <0.5            | 2.4          | <i.5< td=""></i.5<> |
| MW6    | 098      | 4/11/97   | 0.6           | NА            | <0.5         | <0.5            | <0.5         | <1.5                |
| MW6    | 344      | 6/11/97   | <0.5          | <0.5.         | <0.5         | <0.5            | <0.5         | <1.5                |
| MW6    | 451      | 10/28/97  | 0.3 J         | <0.5          | <0,5         | <0.5            | <0.5         | <1.5                |
| MW6    | 532      | 2/6/98    | 0.4 J         | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW6    | 584      | 4/6/98    | 0.3 J         | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW7    | 353      | 6/12/97   | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW7    | 450      | 10/28/97  | 0.6           | <0.5          | <0.5         | ≪0.5            | <0.5         | <1.5                |
| MW7    | 531      | 2/6/98    | 0.4 J         | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW7    | 583      |           | 0.2 J         | <0,5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW8    | 127      | 4/14/97   | ≪0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW8    | 354      | 6/12/97   | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <i.5< td=""></i.5<> |
| 8WM    | 454      | 10/28/97  | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW8    | 455      | 2/6/98    | 0.2 J         | 0.2 J         | <0.5         | <0.5            | <0.5         | <1.5                |
| MW8    | 587      | 4/6/98    | 0.2 J         | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW9    | 170      | 4/17/97   | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW9    | 347      | 6/11/97   | <0,5          | <0.5          | <0,5         | <0,5            | <0.5         | <1.5                |
| MW9 (d | upe) 348 |           | <0.5          | ≪0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW9    | 453      | 10/28/97  | <0.5          | <0.5          | <0.5         | <0.5            | <0.5         | <1.5                |
| MW9    | 534      | 2/6/98    | 0.1 J         | <0.5          | <0.5         | <b>&lt;</b> 0.5 | <0.5         | <1.5                |
| MW9    | 586      |           | 0.2 J         | <0.5          | <0.5         | <0.5            | <0.5         | 0.7 J               |
| MW10 ( | B3-0991  | 4/11/97   | 810           | NA            | <0.5         | <0.5            | <0,5         | <1.5                |
| MW10   | 346      |           | 5.8           | 2.0           | 1.8          | 1.9             | 2.4          | 4.1                 |
| MW10   | 539      |           | 8             | <5            | 4.4          | 8.6             | 10.3         | 7.8                 |
| MW10   |          | 4/6/98 _  |               | *             | *            | *               | *            | *                   |

Explanation:

J = Estimated value

\*MW10 contained free product

M8015E = Modified Method 8015 - Extractables

mg/L = milligrams per liter

NA = Not analyzed

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-M = Total Petroleum Hydrocarbons as Motor Oil

µg/L = micrograms per liter

Table A-3

Free Product Analysis, Site 22187, MCB Camp Pendleton

| 21002101    | Trouble 1 Millians, Dice 2220. 7 2202 Oline |               |               |          |          |              |          |  |  |  |  |
|-------------|---------------------------------------------|---------------|---------------|----------|----------|--------------|----------|--|--|--|--|
|             | CONSTITUENT:                                | TPH-D         | TPH-M         | Benzene  | Toluenc  | Ethylbenzene | Xylenes  |  |  |  |  |
|             | METHOD:                                     | M8015<br>LUFT | M8015<br>LUFT | EPA-8020 | EPA-8020 | EPA-8020     | EPA-8020 |  |  |  |  |
|             | UNITS:                                      | mg/L          | mg/L          | μg/L     | μg/L     | μg/L         | μg/L     |  |  |  |  |
| SAMPLE      | DATE                                        |               |               |          |          |              |          |  |  |  |  |
| MW10-505    |                                             | 226,000       | 79.100        | <2,500   | <2.500   | 1_900.J      | 4.700 J  |  |  |  |  |
| Explanation | W 1                                         |               |               |          |          |              |          |  |  |  |  |

splanation:
J = Estimated value
M801SE = Modified Method 8015 - Extractables
mg/L = milligrams per liter
TPH-D = Total Petroleum Hydrocarbons as Diesel
TPH-M = Total Petroleum Hydrocarbons as Motor Oil
µg/L = micrograms per liter

Table A-4

Historical Bioremediation Activity Indicators (Lab Measurements), Silte 22187, MCB Camp Pendleton

| 1115101                                                                                      | CONSTI                                                                                                                                                        |                                                                                                                                                                                         | Alk                                                                                                                                                 | Ammonia                                                                         |                                                                                                          | Nitrite            | TKN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phos                                   | Sulfate                                                                                                                                                               | Sulfide                            | Total<br>Iron                                                                                                                                                                                             | Ferrous<br>Iron                               | Methane                                                                                    | Dissolved<br>Oxygen                                                                                                | Redox                                                                                               |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                              | ME                                                                                                                                                            | THOD:                                                                                                                                                                                   | 310.1                                                                                                                                               | 350.2                                                                           | 300.0                                                                                                    | 300.0              | 351.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300.0                                  | 300.0                                                                                                                                                                 | Hach                               | 7380                                                                                                                                                                                                      | Hach                                          | GC/FID                                                                                     | Meter                                                                                                              | Meter                                                                                               |
|                                                                                              |                                                                                                                                                               | UNITS:                                                                                                                                                                                  | mg/L                                                                                                                                                | mg/L                                                                            | mg/L                                                                                                     | mg/L               | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                   | mg/L                                                                                                                                                                  | mg/L                               | mg/L                                                                                                                                                                                                      | mg/L                                          | μg/L                                                                                       | mg/L                                                                                                               | mV                                                                                                  |
| WELL MW4 MW4 MW4 MW5 MW5 MW5 MW5 MW6 MW6 MW6 MW7 MW7 MW7 MW7 MW7 MW8 MW8 MW8 MW8 MW8 MW8 MW8 | 360<br>455<br>531<br>588<br>345<br>452<br>533<br>585<br>344<br>451<br>532<br>584<br>450<br>531<br>583<br>354<br>454<br>536<br>587<br>347<br>348<br>453<br>534 | DATE 6/12/97 10/28/97 2/6/98 4/6/98 6/11/97 10/28/97 2/6/98 4/6/98 6/11/97 10/28/97 2/6/98 4/6/98 6/12/97 10/28/97 2/6/98 4/6/98 6/12/97 10/28/97 2/6/98 4/6/98 6/11/97 10/28/97 2/6/98 | 1420<br>1430<br>1430<br>1430<br>567<br>675<br>611<br>892<br>713<br>853<br>799<br>662<br>691<br>861<br>873<br>768<br>781<br>558<br>569<br>626<br>710 | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>N | <pre>&lt;4 &lt;3.2 &lt;3.2 &lt;3.2 &lt;0.8 &lt;0.8 &lt;0.8 &lt;0.8 &lt;0.8 &lt;0.8 &lt;0.8 &lt;0.8</pre> |                    | 1.2<br>1.5<br>NA<br>1.3<br>1.5<br>NA<br>2.0<br>1.5<br>NA<br>1.2<br>1.4<br>NA<br>1.2<br>1.4<br>NA<br>1.2<br>1.4<br>NA<br>1.2<br>1.4<br>NA<br>1.2<br>1.4<br>NA<br>1.3<br>1.4<br>NA<br>1.3<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>NA<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1.4<br>Na<br>1 | 00000000000000000000000000000000000000 | 906<br>959<br>866<br>1060<br>256<br>257<br>230<br>151<br>246<br>223<br>210<br>190<br>256<br>245<br>230<br>276<br>513<br>451<br>401<br>385<br>242<br>223<br>253<br>340 | MAADAAADAAAADAAAADAAAADAAAADAAAADA | 14.0<br><0.1<br>0.403<br>0.0230 J<br>11.0<br><0.1<br>4.56<br>2.14<br>13.3<br><0.1<br>3.14<br>1.7<br>22.4<br><0.1<br>0.013 J<br>0.0433 J<br>32.7<br><0.1<br>2.85<br>109<br>0.0424<br>49.7<br><0.1<br><0.05 | NA NDA NA | NA <3 <3 4.76 NA 547 570 1170 NA 39 370 8.75 NA 76.1 52 31.0 NA 575 690 33.0 NA NA 106 370 | NA<br>NA<br>5.21<br>NA<br>NA<br>0.64<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | NA<br>148<br>NA<br>110<br>NA<br>110<br>NA<br>170<br>NA<br>155<br>NA<br>NA<br>155<br>NA<br>NA<br>166 |
| MW9<br>MW10<br>MW10<br>MW10                                                                  | 586<br>346<br>539                                                                                                                                             | 4/6/98<br>6/11/97<br>2/6/98<br>4/6/98                                                                                                                                                   | 666<br>973<br>906                                                                                                                                   | NA<br>1.2<br>NA                                                                 | <1.6<br><0.4<br>0.2                                                                                      | <2<br><0.5<br><0.2 | NA<br>3.0<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4<br><1<br>0.7                        | 350<br>186<br>52                                                                                                                                                      | NA<br>NA                           | 0.0437 J<br>9.0<br>0.925                                                                                                                                                                                  | NA<br>NA<br>NA                                | 178<br>NA<br>3100                                                                          | NA<br>NA<br>NA                                                                                                     | NA<br>NA<br>NA                                                                                      |

Explanation:

mV = millivolts

NA = Not Analyzed

TKN = Total Kjeldahl Nitrogen

Phos = Phosphorus

µg/L = micrograms per liter

MW10 contained free product and was not sampled Alk = Alkalinity

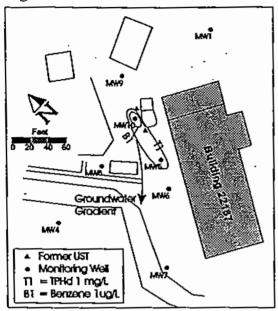
GC/FID = Gas Chromatograph/Flame Ionization Detector J = Estimated value

mg/L = milligrams per liter

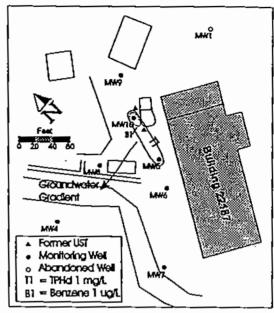
Table A-5 Historical Bioremediation Activity Indicators (Field Measurements), Site 22187 MCB Camp Pendleton

|      | CONSTITUENT: | Dissolved O2 | Redox<br>(Orion) | Redox<br>(Orp) | Ferrous<br>Iron | Sulfide |
|------|--------------|--------------|------------------|----------------|-----------------|---------|
|      | UNITS:       | mg/L         | mV               | mV             | mg/L            | mg/L    |
| WELL | DATE         |              |                  |                |                 | _       |
| MW4  | 10/28/97     | 7.40         | 98.3             | 75             | ND              | ND      |
| MW4  | 2/6/98       | 5.21         | NA               | 148            | ND              | ND      |
| MW4  | 4/6/98       | 10.93        | NA               | 136            | ND              | ND      |
| MW5  | 10/28/97     | 2.00         | -87              | -75            | 2.40            | ND      |
| MW5  | 2/6/98       | 0.64         | NA               | 110            | ND              | ND      |
| MW5  | 4/6/98       | 2.98         | NA               | -101           | 2,2             | ND      |
| MW6  | 10/28/97     | 4.20         | -63              | -50            | 1.60            | ND      |
| MW6  | 2/6/98       | 0.88         | NA               | -22            | 2.0             | ND      |
| MW6  | 4/6/98       | 3.27         | NA               | -60            | 1.2             | ND      |
| MW7  | 10/28/97     | 2,60         | 134.7            | 85             | ND              | ND      |
| MW7  | 2/6/98       | 1.68         | NA               | 170            | ND              | ND      |
| MW7  | 4/6/98       | 1.56         | NA               | 1 <b>7</b> 7   | ND              | ND      |
| MW8  | 10/28/97     | 4.45         | 3                | 15             | 0.30            | ND      |
| MW8  | 2/6/98       | 3.12         | NA               | 155            | ND              | ND      |
| MW8  | 4/6/98       | 8.85         | NA               | 96             | ND              | ND      |
| MW9  | 10/28/97     | 2.70         | 61.5             | 35             | ND              | ND      |
| MW9  | 2/6/98       | 1.49         | NA               | -106           | ND              | ND      |
| MW9  | 4/6/98       | 3.47         | NA               | -163           | ND              | ΝD      |
| MW10 | 10/28/97     | ľ            | 1                | 7              | -17             | i       |
| MW10 |              | 1            | 1                | 1              | 1               | 1       |
| MW10 |              | 1            | <u> </u>         | 1              | 1               | L       |

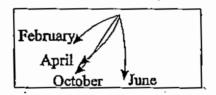
Explanation:


MW10 contained free product and was not sampled mg/L = milligrams per liter

mV = millivolts


NA = Not analyzed

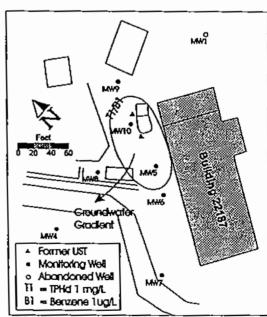
ND = Not detected


Figure A-1 Historical Groundwater Gradient and Contaminant Distribution at Site 22187.



June 1997




October 1997



Interpreted Groundwater Flow Direction



February 1998



April 1998

# APPENDIX B GROUNDWATER SAMPLING SHEETS AND WASTE MANIFESTS

|                             | <ul> <li>WELL GAUGING I</li> </ul> | DATA |         |                 |
|-----------------------------|------------------------------------|------|---------|-----------------|
| Project # <u>050411-0</u> ) | Date 4/14/05                       |      | Parsons | (a) Come Pendia |
|                             |                                    |      |         | • •             |

Site Area 22 S.te 22187

|               | 11/2-11      |         | Daneth da              | Thickness<br>of | Volume of<br>Immiscibles |                |               | G                    |                |
|---------------|--------------|---------|------------------------|-----------------|--------------------------|----------------|---------------|----------------------|----------------|
|               | Well<br>Size | Sheen / | Depth to<br>Immiscible |                 |                          | Depth to water | Depth to well | Survey<br>Point: TOB |                |
| Well ID       | (in.)        | Odor    | Liquid (ft.)           | Liquid (ft.)    | ( <u>m</u> l)            | (ft.)          | bottom (ft.)  | or TOC               |                |
| 77141-4       | ΙΨ.          |         |                        |                 |                          | 3.60           | 17.35         | TOC                  |                |
| 22187-4<br>MW | 11           | \       |                        |                 |                          | 9 031          | 19.8          |                      |                |
| 22187-5       | Ţ            | Opor    |                        |                 |                          | 9.84           |               | <u> </u>             |                |
| 221876        | 4            | oda     |                        |                 |                          | 10.27          | 19.65         |                      |                |
| $ m\omega $   | 4            | · .     |                        |                 |                          | 10.15          | 19.80         |                      |                |
| 22187-7<br>MW | l ht         |         |                        |                 |                          |                | <u> </u>      |                      |                |
| 72187-8       | 4            |         |                        |                 |                          | 11.90          | 21.94         |                      |                |
| MW 22187-9    | Ψ.           |         |                        |                 |                          | 9.25           | 19.71         |                      |                |
| 52181.M       | 11           |         |                        |                 |                          | 9.75           | 20.17         |                      |                |
| 12 C. O (190) |              |         |                        |                 |                          | رسي ١٥         |               | 40                   |                |
|               |              |         |                        |                 |                          |                |               |                      |                |
|               |              |         | ٠,                     |                 |                          |                |               | i                    |                |
| 7,            |              |         |                        |                 |                          |                |               |                      |                |
|               |              |         |                        |                 |                          |                |               |                      |                |
|               |              |         |                        | <del></del>     |                          |                |               |                      |                |
|               |              |         |                        |                 |                          |                |               |                      |                |
|               | <u> </u>     |         |                        | · · ·           |                          |                |               |                      |                |
|               |              |         |                        |                 |                          |                | <u> </u>      | _                    | <del>.</del> – |
|               |              |         |                        |                 |                          |                |               |                      |                |
|               |              |         |                        |                 |                          |                |               |                      |                |
|               |              |         |                        |                 |                          |                |               |                      |                |
|               |              |         |                        |                 |                          |                |               |                      |                |
|               |              |         |                        |                 |                          |                |               |                      |                |

| WELL MONITORING DATA SHEET                                                        |                                                                                          |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Project #: () 50411-201                                                           | Client: Parsons @ Camp Pendleton BAA                                                     |  |  |  |  |  |  |  |  |  |
| Sampler:                                                                          | Start Date: 4/14/05                                                                      |  |  |  |  |  |  |  |  |  |
| Well I.D.: MW2Z-187-5-                                                            | Well Diameter: 2 3 <b>4</b> 6 8                                                          |  |  |  |  |  |  |  |  |  |
|                                                                                   | Depth to Water Pre: 7.8 Post: 13.65                                                      |  |  |  |  |  |  |  |  |  |
| Depth to Free Product:                                                            | Thickness of Free Product (feet):                                                        |  |  |  |  |  |  |  |  |  |
| Referenced to: EVO Grade                                                          | Flow Cell Type: YSL 556                                                                  |  |  |  |  |  |  |  |  |  |
| Purge Method: 2" Grundles Pump Sampling Method: Dedicated Tubing Flow Rate: 2-6PM | Peristaltic Pump  Bladder Pump  Other  Pump Depth: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |  |  |  |  |  |  |  |  |  |
| 6,5 (Gals.) X 3 = 19                                                              | Well Diameter   Multiplier   Well Diameter   Multiplier                                  |  |  |  |  |  |  |  |  |  |
| Temp. Cond. Time O or °F) pH (mS or us)                                           | Turbidity D.O. ORP Water Removed (NTUs) (mg/L) (mV) (20)s. or mL) Observations           |  |  |  |  |  |  |  |  |  |
| 1317 Start Ours                                                                   | e > 0000                                                                                 |  |  |  |  |  |  |  |  |  |
| 1319 21.747.43 2873                                                               | 2427 1.45 -63.4 4                                                                        |  |  |  |  |  |  |  |  |  |
| 1321 2.79 7.39 2887                                                               | 37 1.42 -67,9 8                                                                          |  |  |  |  |  |  |  |  |  |
| 1323 21.85 7.38 2900                                                              | 10 1.46 -71,0 12                                                                         |  |  |  |  |  |  |  |  |  |
| 1325 21.90 7.36 2911                                                              | 7 1.48 -75,6 16                                                                          |  |  |  |  |  |  |  |  |  |
| 1327 21,91 7,36 2914                                                              | 4 1.47 -76.6 19.5                                                                        |  |  |  |  |  |  |  |  |  |
|                                                                                   |                                                                                          |  |  |  |  |  |  |  |  |  |
|                                                                                   |                                                                                          |  |  |  |  |  |  |  |  |  |
|                                                                                   |                                                                                          |  |  |  |  |  |  |  |  |  |
| Did well dewater? Yes Amount actually evacuated: 19,5                             |                                                                                          |  |  |  |  |  |  |  |  |  |
| Sampling Time: 1335 Sampling Date: 414 05 Depth to Water: (1.65                   |                                                                                          |  |  |  |  |  |  |  |  |  |
| Sample I.D.: MN 22187-5-0405 Laboratory: APCL                                     |                                                                                          |  |  |  |  |  |  |  |  |  |
| Analyzed for: TPH-G BTEX MTBE THOO Other: See SOLD (PNA5)                         |                                                                                          |  |  |  |  |  |  |  |  |  |
| Equipment Blank I.D.: @ Time                                                      | Duplicate I.D.:                                                                          |  |  |  |  |  |  |  |  |  |

| WELL MONTORING DATA SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Project #: 0504[1-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Client: Parsons @ Camp Pendleton BAA                                          |  |  |  |  |  |  |  |  |  |
| Sampler: 🕠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start Date: 41405                                                             |  |  |  |  |  |  |  |  |  |
| Well I.D.: MN ZZ187-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Well Diameter: 2 3 <b>4</b> 6 8                                               |  |  |  |  |  |  |  |  |  |
| Total Well Depth:\9,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth to Water Pre: 10.27 Post: 11.15                                         |  |  |  |  |  |  |  |  |  |
| Depth to Free Product:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Thickness of Free Product (feet):                                             |  |  |  |  |  |  |  |  |  |
| Referenced to: Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow Cell Type: YST 550                                                       |  |  |  |  |  |  |  |  |  |
| Purge Method: 2" Gundfo Pump Peristaltic Pump Bladder Pump Sampling Method: Dedicated Tubing Disposable Bailer Other  Flow Rate: 2 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |  |  |  |  |  |  |  |  |  |
| (Gals.) X 5 = 163   Well Diameter Multiplier Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter   Well Diameter Multiplier   Well Diameter   Well |                                                                               |  |  |  |  |  |  |  |  |  |
| Temp. Cond. Time or F) pH (mS or µ3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Turbidity D.O. ORP Water Removed (NTUs) (mg/L) (mV) (gas. or mL) Observations |  |  |  |  |  |  |  |  |  |
| 1252 Start Purga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |  |  |  |  |  |  |  |  |  |
| 1254 21.88 7.4 2839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 0.53-62.9 4 odar                                                           |  |  |  |  |  |  |  |  |  |
| 1255 21.95 7.38 2873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 0.46 -732 6                                                                |  |  |  |  |  |  |  |  |  |
| 1256 2200 7.36 2882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14 0.37 -76.9 8                                                               |  |  |  |  |  |  |  |  |  |
| 1258 22.00 7,37 2886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 0.29 -76.2 12                                                              |  |  |  |  |  |  |  |  |  |
| 5259 ZZ.05 7.37 2909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 0.30 -79.9 16                                                              |  |  |  |  |  |  |  |  |  |
| 1391 22.04 7,37 2905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 031 -80.1 18.5                                                              |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |  |  |  |  |  |  |  |  |  |
| Did well dewater? Yes (Ng)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Amount actually evacuated: 18.5                                               |  |  |  |  |  |  |  |  |  |
| Sampling Time: 306 Sampling Date: 4/14/05 Depth to Water: 1/6/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |  |  |  |  |  |  |  |  |  |
| Sample I.D.: MW22187-6-0405 Laboratory: APCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |  |  |  |  |  |  |  |  |  |
| Analyzed for: TPH-G BTEX MTBE (PH-D) Other: See SOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |  |  |  |  |  |  |  |  |  |
| Equipment Blank I.D.: @ Duplicate I.D.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |  |  |  |  |  |  |  |  |  |

| WELL MONITORING DATA SHEET                                                       |                                                                                  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Project #: 050411-001                                                            | Client: Parsons @ Camp Pendleton BAA                                             |  |  |  |  |  |  |  |  |  |
| Sampler: CO                                                                      | Start Date: 414105                                                               |  |  |  |  |  |  |  |  |  |
| Well I.D.: MN 22187-7-04050                                                      | Well Diameter: 2 3 4 6 8                                                         |  |  |  |  |  |  |  |  |  |
| Total Well Depth: \9,80                                                          | Depth to Water Pre: 10.15 Post: 13.97                                            |  |  |  |  |  |  |  |  |  |
| Depth to Free Product:                                                           | Thickness of Free Product (feet):                                                |  |  |  |  |  |  |  |  |  |
| Referenced to: PVI Grade                                                         | Flow Cell Type: 154 556                                                          |  |  |  |  |  |  |  |  |  |
| Purge Method: 2" Grundfor Pump Sampling Method: Dedicated Tubing Flow Rate: ZGPM | Peristaltic Pump  Disposable Bailed  Pump Depth: 19.09  Disposable Bailed  Other |  |  |  |  |  |  |  |  |  |
| Well Diameter Multiplier   Well Diameter Multiplier   Well Diameter Multiplier   |                                                                                  |  |  |  |  |  |  |  |  |  |
| Temp. Cond. Time or or or pH (mS or pS)                                          | Turbidity D.O. ORP Water Removed (NTUs) (mg/L) (mV) Gals. or mL) Observations    |  |  |  |  |  |  |  |  |  |
| 1217 Start Purge                                                                 |                                                                                  |  |  |  |  |  |  |  |  |  |
| 1219 21.47 7.53 1973                                                             | 20 2.27 659 4                                                                    |  |  |  |  |  |  |  |  |  |
| 1220 21.40 7.56 1985                                                             | 10 1.68 70.2 6                                                                   |  |  |  |  |  |  |  |  |  |
| 1221 Z1.35 7.58 1997                                                             | 7 1.21 73.5 8                                                                    |  |  |  |  |  |  |  |  |  |
| 1223 21.45 7.59 2064                                                             | 6 0.68 74.5 12                                                                   |  |  |  |  |  |  |  |  |  |
| 1225 21.59 7.59 2097                                                             | 4 0.66 74.2 16                                                                   |  |  |  |  |  |  |  |  |  |
| 1227 21.62 7.58 2103                                                             | 4 9.66 74.0 19                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                  |                                                                                  |  |  |  |  |  |  |  |  |  |
| Did well dewater? Yes (Na) Amount actually evacuated: (9)                        |                                                                                  |  |  |  |  |  |  |  |  |  |
| Sampling Time: 1234 Sampling Date: 41465 Depth to Water: 12,05                   |                                                                                  |  |  |  |  |  |  |  |  |  |
| Sample I.D.: MW 22187-7-0405 Laboratory: APCL                                    |                                                                                  |  |  |  |  |  |  |  |  |  |
| Analyzed for: TPH-G BTEX MTBE THAT Other: See Sou                                |                                                                                  |  |  |  |  |  |  |  |  |  |
| Equipment Blank I.D.:                                                            | Dunlingto I D.                                                                   |  |  |  |  |  |  |  |  |  |

|                                        |             |                        | · · · · · · · · · · · · · · · · · · · | 21 1X X O 144X      | TO DAXIE                                  |                                    | <u> </u>                      |                                                       |  |  |  |
|----------------------------------------|-------------|------------------------|---------------------------------------|---------------------|-------------------------------------------|------------------------------------|-------------------------------|-------------------------------------------------------|--|--|--|
| Project #                              | 05041       | 105-                   |                                       | Client:             | Parsons                                   | @ Cam                              | p Pendleton                   | BAA                                                   |  |  |  |
| Sampler:                               | 05          |                        |                                       | Start Date          | : 4140                                    | 5                                  | -                             |                                                       |  |  |  |
| Well I.D.                              | : MW221     | 187-8                  | ,                                     | Well Dian           | neter: 2                                  | 3 Q                                | 6 8                           |                                                       |  |  |  |
|                                        | II Depth: Z |                        |                                       | Depth to V          | Depth to Water Pre: 11,90 Post: 20,15     |                                    |                               |                                                       |  |  |  |
| Depth to                               | Free Produ  | ıct:                   |                                       | Thickness           | hickness of Free Product (feet):          |                                    |                               |                                                       |  |  |  |
| Reference                              | ed to:      | <i>69</i> 5            | Grade                                 | Flow Cell           | Type:                                     | SI                                 | >56                           |                                                       |  |  |  |
| Purge Meth<br>Sampling M<br>Flow Rate: |             | 2" Grands<br>Dedicated | ·                                     |                     | Peristaltic P<br>Disposable<br>Pump Deptl | Baile                              | Bladder Pump<br>Other         |                                                       |  |  |  |
| 65<br>Gals.                            | _(Gals.) X  | 3                      | = <u>l</u> C                          | 1,5                 | Well Diameter<br>1"<br>2"<br>3"           | Multiplier<br>0.04<br>0.16<br>0.37 | 4" 0<br>6" 1                  | ultiplier<br>.65<br>.47<br>adius <sup>2</sup> * 0.163 |  |  |  |
| Time                                   | Temp.       | pН                     | Cond.<br>(mS or (13)                  | Turbidity<br>(NTUs) | D.O.<br>(mg/L)                            | ORP<br>(mV)                        | Water Removed<br>(gas. or mL) | Observations                                          |  |  |  |
| 1154                                   | £3          | ort                    | PURGS                                 | 1                   |                                           | <b>-</b>                           |                               |                                                       |  |  |  |
| 1156                                   | 20.04       | 7.79                   | 2757                                  | 690                 | 6.11                                      | 46                                 | 4                             |                                                       |  |  |  |
| 458                                    | 19.08       | 7.63                   | 2810                                  | 643                 | 4.13                                      | 101.9                              | 8                             |                                                       |  |  |  |
| 1200                                   | 9.28        | 7.54                   | 2179                                  | 130                 | 3.46                                      | 106.7                              | 12                            | hell dewatere                                         |  |  |  |
|                                        |             |                        |                                       |                     |                                           |                                    |                               |                                                       |  |  |  |
|                                        |             |                        |                                       |                     |                                           |                                    |                               |                                                       |  |  |  |
| Did well                               | dewater?    | <b>∑</b> ®             | No                                    |                     | Amount a                                  | actually e                         | evacuated: 7                  |                                                       |  |  |  |
| Sampling                               | g Time: 13  | 47                     | Sampling                              | Date: 4/14          | 05                                        | Depth to                           | Water: // 9                   | 2                                                     |  |  |  |
| Sample I                               | D.: M\12    | 22187                  | 16-9r                                 | 95                  | Laborato                                  |                                    | > رک                          |                                                       |  |  |  |
| Analyzed                               |             | TPH-G                  | BTEX MT                               | $\sim$              |                                           | Other: \( \leq \)                  | ee 50W                        |                                                       |  |  |  |
| Equipme                                | nt Blank I. | D.:                    | @<br>Time                             |                     | Duplicate                                 |                                    |                               |                                                       |  |  |  |

| Project #:                                                    | 050H                                                      | 1-001                 |                    | Client: Parsons @ Camp Pendleton BAA |                                      |                      |                   |                |              |  |
|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------|--------------------|--------------------------------------|--------------------------------------|----------------------|-------------------|----------------|--------------|--|
| Sampler:                                                      | (1)                                                       |                       |                    | Start Date:                          | 4/14/05                              |                      |                   |                | •            |  |
| Well I.D.                                                     | MW2Z                                                      | 67-10                 | A                  | Well Diam                            | eter: 2                              | 3                    | 6 8               |                | _            |  |
| ı                                                             | ll Depth: 7                                               | _                     |                    | Depth to V                           | Depth to Water Pre: 9,25 Post: 10.36 |                      |                   |                |              |  |
| Depth to                                                      | Free Produ                                                | ıct:                  |                    | Thickness of Free Product (feet):    |                                      |                      |                   |                |              |  |
| Reference                                                     | ed to:                                                    | <b>O</b> C            | Grade              | Flow Cell                            | Туре: <u>Ү</u>                       | 1.556                |                   |                |              |  |
| Purge Metho<br>Sampling M                                     | [ethod:                                                   | 2"Grundi<br>Dedicated | -                  | (                                    | Peristaltic F<br>Disposable          | Bailer               | Bladder i         | Pump<br>Other_ | 11.43        |  |
| Flow Rate:                                                    | ZGPM                                                      |                       |                    |                                      | Pump Depti                           |                      | Well Diamete      | - Mu           | ltiolier.    |  |
| Gals.                                                         | _(Gals.) X _                                              | 3                     | _ = 24             | <u>5</u>                             | 1"<br>2"<br>3"                       | 0.04<br>0.16<br>0.37 | 4"<br>6"<br>Other | 0.6            | 55           |  |
|                                                               |                                                           |                       |                    |                                      | <u> </u>                             | <del></del>          |                   |                |              |  |
| . Time                                                        | Temp.                                                     | pН                    | Cond.<br>(mS or 🕼) | Turbidity<br>(NTUs)                  | D.O.<br>(mg/L)                       | ORP<br>(mV)          | Water Rem         | -              | Observations |  |
| 740                                                           | St                                                        | $\alpha$              | Pixao              |                                      |                                      |                      | <del>-</del>      |                |              |  |
| 742                                                           | 20.71                                                     | 7.32                  | 3373               | 47                                   | 1,11                                 | 151,4                | 4                 | ``             |              |  |
| 744                                                           | 20,72                                                     | 7.32                  | 3363               | 17                                   | 1,16                                 | 1524                 | 8                 |                |              |  |
| 746                                                           | 20.79                                                     | 7.33                  | 3354               | 28                                   | 0,89                                 | 153.4                | . 12              |                |              |  |
| 148                                                           | 20,62                                                     | 7.34                  | 3323               | 3)                                   | 0,40                                 | 155.1                | 16                |                |              |  |
| 752                                                           | 2084                                                      | 7,34                  | 3310               | 27                                   | 0.42                                 | 1550                 | 20                |                |              |  |
| 753                                                           | 20,83                                                     | 7,34                  | 3292               | 36                                   | 0.42                                 | 1949                 | 21.5              |                |              |  |
|                                                               |                                                           |                       |                    |                                      | <u> </u>                             |                      |                   |                |              |  |
|                                                               |                                                           |                       |                    | l                                    |                                      |                      |                   |                |              |  |
| Did well                                                      | Did well dewater? Yes (No Amount actually evacuated: 21,5 |                       |                    |                                      |                                      |                      |                   |                |              |  |
| Sampling Time: 759 Sampling Date: 4/14/05 Depth to Water: 101 |                                                           |                       |                    |                                      |                                      | 10.3                 | ال                |                |              |  |
| Sample I.                                                     | .D.: M                                                    | 22187                 | -10A-0             | 405                                  | Laborato                             | ry:                  | الل               |                |              |  |
| Analyzed                                                      |                                                           | TPH-G                 | BTEX MT            |                                      |                                      | Other:               | ide Sol           | $\zeta$        |              |  |
| Equipme                                                       | nt Blank I.                                               | .D.:                  | @<br>Time          | Duplicate I.D.:                      |                                      |                      |                   |                |              |  |

|              | NON-HAZARDOUS WASTE MANIFEST                                                                     |                        | 0.0.2.3.5.3.3                 |                      | 2. Page 1<br>of . 1 |                                              |                          |             |
|--------------|--------------------------------------------------------------------------------------------------|------------------------|-------------------------------|----------------------|---------------------|----------------------------------------------|--------------------------|-------------|
| ı İ          | Grinds Stables Marita City Address Em                                                            | vironmental Sec.       | utty At                       | Chuck Davina         |                     |                                              |                          |             |
| N            | Camp Pendleton CA 92055                                                                          |                        |                               |                      | CA 1738             | 4                                            |                          |             |
| 1 2          | ocate alors the list                                                                             | - 5617                 | 4 NEEDA ID N                  |                      | <u> </u>            | ( Di                                         |                          |             |
| 1 1-         | Transporter I Company Name<br>ECOLOGY CONTROL INDUSTR                                            | ies                    | C A D 9 8 2 0                 | .3.0,1,7,3           | <del></del>         | 31                                           | J 320-2565               |             |
| Ιį           | 7. Transporter 2 Company Name                                                                    |                        | B. US EPA IO N                | umber                | B. Transports       | ora Phono                                    |                          |             |
|              | P. Designated Pacifity Name and Site Address CROSEY & CVERTON 1630 W. 17TH STREET                |                        | 10. US EPA IO N               | nwper                | C. Facility's F     | hone                                         |                          |             |
| $\ $         | LONG BEACH CA 90813                                                                              |                        | CAD 0, 2, 8,4                 | .0 <u>.</u> 9.0.1.9  |                     | 56                                           | 2 432-5445               |             |
| H            | 11. Waste Shipping Name and Description                                                          |                        |                               |                      | . 12.               | Containers<br>. Typn                         | 13.<br>Total<br>Quantity | 14.<br>Unit |
| ľ            | Non Hazardous Wests, Liquid (Ground                                                              | water)                 |                               |                      |                     | ,, 1 <del>,,</del>                           | - Ovaniny                | WI/Vol      |
| H            | •                                                                                                |                        |                               |                      | 0.4                 | 3. 1 T. T                                    | 1.000                    | G           |
| إِ           | b.                                                                                               |                        |                               |                      |                     |                                              |                          |             |
| GENERATOR    |                                                                                                  |                        |                               |                      |                     | , .                                          | . :                      | <u> </u>    |
| 4            | <u> </u>                                                                                         |                        |                               |                      |                     |                                              |                          |             |
| Ŗ            |                                                                                                  |                        | _ <b>.</b>                    |                      | <u>.</u>            | . <u>.</u>                                   |                          |             |
| IJ           | d.                                                                                               |                        |                               |                      |                     |                                              |                          |             |
|              |                                                                                                  |                        |                               |                      | <u> </u>            | <u> </u>                                     | <u></u>                  |             |
| $\ $         | D. Additional Descriptions for Material; Usted Al (L) Profiles 09627                             | bova                   |                               |                      | E. Honding          | Codes for V                                  | Yaslas Listed Abov<br>سر | e           |
|              |                                                                                                  |                        |                               | •                    |                     | 15                                           |                          |             |
| $\ $         | 15 Part   1 (1 - 12 - 1 - 1 - 1 + 1 )   10 - 1                                                   | late martes            |                               |                      |                     |                                              |                          |             |
| $\ $         | <ol> <li>Special Handling Instructions and Additional</li> <li>Bour Enmergency # 1-80</li> </ol> | 0-321-5479             |                               |                      |                     |                                              |                          |             |
| $\parallel$  | ECI Job #5069 PC                                                                                 | <b>*</b> 733868        |                               |                      |                     |                                              |                          |             |
|              |                                                                                                  |                        |                               |                      |                     |                                              |                          |             |
|              |                                                                                                  |                        |                               |                      |                     |                                              |                          |             |
|              | 76, GENERATOR'S CERTIFICATION: I confify the                                                     | materials described of | boye on this monlfest are not | which to federal re  | gulations for rep   | oujud blober                                 | disposal of Hazardo      | ùs Waste,   |
| ۷Ì           | Printed Typed Name                                                                               |                        | Signature                     | ינולעכ               | 11105               |                                              | Menth Do                 | 105         |
| 1            | 17. Transporter 1 Acknowledgement of Receipt of                                                  | if Matérials           | 1                             |                      |                     | ~~~                                          |                          | <u> </u>    |
| HBAZOPORT-WA | Printed/Typed Name COSTIC                                                                        | <del>H</del> 1         | Signature                     | uf lo                | zl-                 | <u>.                                    </u> | 10-4/1·                  | Y Yaci      |
| Ŗ            | <ol> <li>Transporter 2 Acknowledgement of Receipt a<br/>Printed/Typed Nama</li> </ol>            | f Materials            | Signoture                     | <del></del>          |                     |                                              | Month Da                 | y Year      |
| Ę            |                                                                                                  |                        |                               |                      |                     |                                              | <u> </u>                 | <u> </u>    |
|              | 19. Discrepancy Indication Space                                                                 | -                      |                               |                      |                     |                                              |                          |             |
| FAC          |                                                                                                  |                        |                               |                      |                     |                                              |                          |             |
| Ĺi           | 20. Facility Owner or Operator: Cartification of r                                               | eceipt of waste mat    | reriols covered by this man   | affect except as not | ed in Item 19.      | <del>.</del>                                 |                          |             |
| l<br>T<br>Y  | Printed/Typed Nerth                                                                              |                        | Signature                     | -1                   |                     |                                              | Month , Do               | y_ Yeac     |
|              | JOE SIMONE                                                                                       |                        | for                           | Lin                  | ve-                 |                                              | 1241                     | 8/48        |

ECI DISPATCH

NO.025 P.3/4

**Ecology Control Industries** 

この10~0万世元 | りま~>世代 | の世代>~0日の

# TRANSPORTATION SERVICE ORDER

| ECI ///<br>Ecology Control Industries  | 80%                                                 | 131/05              |                     | SERVICE ORDER |                                                  |                 |  |  |
|----------------------------------------|-----------------------------------------------------|---------------------|---------------------|---------------|--------------------------------------------------|-----------------|--|--|
| A FULL SERVICE ENVIRONMENTAL COMPANY   | DATE: 04/18                                         | 105                 | SERVIC              | e<br>#        | 288 <b>32</b>                                    | 4 5069          |  |  |
| Name: PARSON ENGIN                     | EFRING Job Locatio                                  | n: Cump             | PEN.                | DIANA         | Lon OC                                           | noun Some       |  |  |
| Address (BILLING):                     | City:                                               |                     |                     | Zip:          |                                                  |                 |  |  |
| Ordered by:                            | Сотралу:_                                           | ·                   | <del>/</del> ^      | P.O.          | #                                                |                 |  |  |
| vame (PRINT): Eads of Castr            | Signed: S                                           | thuf                | Yo                  | elm           | <u> </u>                                         | <u> </u>        |  |  |
| Truck #: 02 200 8 Trailer #:           |                                                     | 1                   | ,                   |               |                                                  |                 |  |  |
| Services performed: 121024             | O CAMP DE                                           | NOLAN               | tan 1               | ND            | CAAN                                             | Seale           |  |  |
| on for work !                          |                                                     |                     |                     |               |                                                  | , , .           |  |  |
| of 1000 Galuns                         | _                                                   |                     | •                   |               | 2                                                |                 |  |  |
| wiele badu & c                         | . 0 /                                               |                     | ,                   | "             |                                                  | ,               |  |  |
|                                        | _                                                   | ,                   | _                   |               | , , ,                                            | E C/            |  |  |
| Lorence Gano                           | - Confice                                           | (a. N-02            | - 100               | us.           | <del>//</del>                                    | <u> </u>        |  |  |
|                                        |                                                     | المحت               |                     |               |                                                  |                 |  |  |
| MANIFEST #: DISPOSA                    | AL #:                                               | Start               | PM Stop:            |               | Gross Time:.                                     | Hrs.            |  |  |
| *                                      |                                                     | -  <br>  MEALS:     | · AM                | _ ,,,         |                                                  |                 |  |  |
| tLoads: Qty:                           |                                                     | MEALS:              | <u>श्रम</u> Stop: _ | PM            | Less:                                            | Hrs             |  |  |
| •                                      | Yards:                                              | Other Time:         |                     | //Deduct      | Total:                                           | <u>}</u><br>Hrs |  |  |
| · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · ·               |                     | Add                 | / Deduct      |                                                  | <del></del>     |  |  |
| Fime In:Time In:                       | <del>-</del>                                        | Time in:            | · - <u></u>         |               | op Miles:<br>ad Miles:                           |                 |  |  |
| Time OutTime Out.                      | <del></del>                                         | Time Out            | <del></del>         |               | iles Driven: _                                   |                 |  |  |
| QTY, U.O.M. FLAT                       | E EXT,                                              |                     | QTY.                | U.O.M.        | RATE X                                           | EXT.            |  |  |
| /acuum Truck 8 65                      | 520,00                                              | Disposal            |                     | <u> </u>      |                                                  | 270.0           |  |  |
| End Dump                               |                                                     | Washout             |                     |               | 2/ 1/                                            | 22 (18)         |  |  |
| Roll-oft                               |                                                     | Roper Pump          |                     |               |                                                  | 12 180          |  |  |
| Flat Bed                               |                                                     | Bin Liner           | _                   |               |                                                  | 100             |  |  |
| Tank Mover                             |                                                     | Surcharge           |                     |               | 1                                                | <b>X</b> \//    |  |  |
| Driver Relief Subsistence              |                                                     |                     |                     | <del> </del>  | <del>                                     </del> | $\overline{}$   |  |  |
| addition                               |                                                     | - <del></del>       | <del></del>         | -             | <del></del>                                      | <del></del>     |  |  |
|                                        |                                                     |                     | ··                  |               | <del>   </del>                                   | <del></del>     |  |  |
| ······································ | <del>(   -   -   -   -   -   -   -   -   -   </del> | ONS<br>Trile: GBOLD |                     |               | <u></u>                                          |                 |  |  |

# APPENDIX C LABORATORY REPORTS

**MANIFESTS** 

# Applied P & CH Laboratories

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Parsons Engineering Science Attention: Cindy Zicker 100 W. Walnut Street Pasadena CA 91124

Tel: (626)585-6000 Fax: (626)440-6200

# **APCL Analytical Report**

Service ID #: 801-052314

Collected by: CD

Collected on: 04/14/05

Received: 04/14/05

Extracted: 04/18-20/05 Tested: 04/14-27/05

Reported: 05/04/05

Sample Description: Water from Site 22187.

Project Description: 933868 Camp Pendleton Area 22.

# Analysis of Water Samples

|                    |            |           |      |       | Analysis Result              |                              |  |  |
|--------------------|------------|-----------|------|-------|------------------------------|------------------------------|--|--|
| Component Analyzed | Method     | Unit      | PQL  | MDL   | MW22187-5-0405<br>05-02314-1 | MW22187-6-0405<br>05-02314-2 |  |  |
| ALKALINITY         | 310.1      | mg/L      | 2    | 0.93  | 520                          | 520                          |  |  |
| IRON (II)          | SM3500DFE- | mg/L      | 0.05 | 0.012 | 0.061                        | < 0.05                       |  |  |
| Dilution Factor    |            |           |      |       | 100                          | 50                           |  |  |
| NITRATE AS N       | 300.0      | mg/L      | 0.06 | 0.020 | 4.2J                         | 9.3                          |  |  |
| SULFATE            | 300.0      | mg/L      | 0.5  | 0.16  | 360                          | 240                          |  |  |
| Dilution Factor    |            |           |      |       | 0.96                         | 0.96                         |  |  |
| DIESEL             | M8015E     | mg/L      | 0.1  | 0.013 | 0.56                         | 0.23                         |  |  |
| Dilution Factor    |            |           |      |       | 1                            | 1                            |  |  |
| METHANE            | RSK175     | $\mu g/L$ | 3    | 0.55  | 5.8                          | 29                           |  |  |
| ETHANE             | RSK175     | $\mu g/L$ | 3    | 1.6   | <3                           | <3                           |  |  |
| ETHENE             | RSK 175    | $\mu g/L$ | 3    | 0.56  | <3                           | <3                           |  |  |

|                    |            |      |      |       |                | Analysis Resul |                  |
|--------------------|------------|------|------|-------|----------------|----------------|------------------|
| Component Analyzed | Method     | Unit | PQL  | MDL   | MW22187-7-0405 | MW22187-8-0405 | MW22187-10A-0405 |
|                    |            |      |      |       | 05-02314-3     | 05-02314-4     | 05-02314-5       |
| ALKALINITY         | 310.1      | mg/L | 2    | 0.93  | 360            | 190            | 550              |
| IRON (II)          | SM3500DFE- | mg/L | 0.05 | 0.012 | 0.17           | 0.17           | 0.18             |
| Dilution Factor    |            |      |      |       | 40             | 100            | 100              |
| NITRATE AS N       | 300.0      | mg/L | 0.06 | 0.020 | 1.6J           | 7.8            | 3.3J             |
| SULFATE            | 300.0      | mg/L | 0.5  | 0.16  | 250            | 630            | 410              |
| Dilution Factor    |            |      |      |       | 0.96           | 0.96           | 0.96             |
| DIESEL             | M8015E     | mg/L | 0.1  | 0.013 | 0.10           | 6.5            | 0.27             |
| Dilution Factor    |            |      |      |       | 1              | 1              | 1                |
| METHANE            | RSK 175    | μg/L | 3    | 0.55  | <3             | 8.1            | < 3              |
| ETHANE             | RSK175     | μg/L | 3    | 1.6   | <3             | <3             | <3               |
| ETHENE             | RSK 175    | μg/L | 3    | 0.56  | <3             | <3             | <3               |

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1440 D004 N 05-2314 Q Page: 1 of 2

# Applied P & CH Laboratories

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

# **APCL Analytical Report**

| Component Analyzed     | Method   | Unit                        | PQI. | MDL  | Analysis Result<br>MW22187-5-0405<br>05-02314-1 |
|------------------------|----------|-----------------------------|------|------|-------------------------------------------------|
| SEMI-VOC               |          |                             |      |      | •                                               |
| Dilution Factor        |          |                             |      |      | i i                                             |
| ACENAPHTHENE           | SW8270C  | $\mu { m g/L}$              | 10   | 1.5  | < 10                                            |
| ACENAPHTHYLENE         | SW8270C  | $\mu g/L$                   | 10   | 1.6  | < 10                                            |
| ANTHRACENE             | SW8270C  | $\mu {\sf g}/{\sf L}$       | 10   | 1.5  | < 10                                            |
| BENZ(A)ANTHRACENE      | SW8270C  | $\mu g/L$                   | 10   | 1.5  | < 10                                            |
| BENZO(A)PYRENE         | SW8270C  | $\mu g/L$                   | 10   | 1.2  | < 10                                            |
| BENZO(B)FLUORANTHENE   | SW8270C  | $\mu \mathrm{g}/\mathrm{L}$ | 10   | 1.9  | < 10                                            |
| BENZO(G,H,I)PERYLENE   | SW8270C  | $\mu g/L$                   | 10   | 1.2  | < 10                                            |
| BENZO(K)FLUORANTHENE   | SW8270C  | $\mu \mathrm{g/L}$          | 10   | 1.5  | < 10                                            |
| CHRYSENE               | SW8270C  | $\mu g/I_{r}$               | 10   | 1.4  | < 10                                            |
| DIBENZ(A,H)ANTHRACENE  | SW8270C  | μg/L                        | 10   | 1.2  | < 10                                            |
| FLUORANTHENE           | SW8270C  | $\mu \mathrm{g}/\mathrm{L}$ | ła   | 1.6  | c 10                                            |
| FLUORENE               | SW8270C  | $\mu$ g/L                   | 10   | 2.0  | < 10                                            |
| INDENO(1,2,3-CD)PYRENE | SW8270C  | $\mu g/L$                   | 10   | 1.1  | < 10                                            |
| 2-METHYLNAPHTHALENE    | \$W8270C | $\mu g/L$                   | 10   | 2.0  | < 10                                            |
| NAPHTHALENE            | SW8270C  | $\mu g/L$                   | 10   | 2.0  | < 10                                            |
| PHENANTHRENE           | SW8270C  | $\mu g/L$                   | 10   | 1.7  | < 10                                            |
| PYRENE                 | SW8270C  | $\mu \mathrm{g}/\mathrm{L}$ | 10   | 0.68 | c 10                                            |

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Will Late

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1440 D004 N 05-2314 h Page: 2 of 2

J: Reported between PQL and MDL.

| ACCO DOCEDO AVENUE                                                                                        | ·             |          |                |          |         | 1701 505 1 51                                                          |
|-----------------------------------------------------------------------------------------------------------|---------------|----------|----------------|----------|---------|------------------------------------------------------------------------|
| ### 1680 ROGERS AVENUE    SAN JOSE, CALIFORNIA 95112-1105     FAX (408) 573-7771     PHONE (408) 573-0555 | (8)           |          | ANALYSI        | S TO DET |         | Parsons (626) 440-4000 Fax: (626) 440-6200 C. Zicker 100 W Walnut Ave. |
| CHAIN OF CUSTODY                                                                                          | 2 2           | O C      |                |          |         | Pasadena CA 91124                                                      |
| CLIENT Parsons                                                                                            | 1 12          | ع لد     |                |          |         | job# 933868 PO# 06000                                                  |
| SITE Camp Pendleton Area 22 - Site 22187                                                                  |               |          | 9              | 70       |         | Disposal by APCL                                                       |
| Global ID T0607302907                                                                                     | 2             | ale<br>F |                | 7        |         | QC requirement : AFCEE                                                 |
| G0001002007                                                                                               | 1 ♀ │ `.      |          | ane            | 7        |         |                                                                        |
| MATRIX CONTAINERS                                                                                         | <u> </u>      |          | Meth           | 7        |         |                                                                        |
| SAMPLE I.D. DATE TIME Q Preservation Type                                                                 | 8015          | 300 8    | RSK175 Methane |          |         | ADD'L INFORMATION STATUS CONDITION LAB SAMPLE #                        |
| MWZZ187.50009411405 1335 AQ 6 NO FILL AUP                                                                 | Х             | X        | X              |          |         |                                                                        |
| MW22187-6-0405 1306 5                                                                                     | X             | X        | X              |          |         |                                                                        |
| MU2215740405 1234                                                                                         | X             | X        | X              |          |         |                                                                        |
| MW22587-8-0405 1347                                                                                       | χ             | X        | $\chi$         |          |         |                                                                        |
| MIN 22187-104:0705 \$ 759 \$ \$ \$                                                                        | X             | $ \chi $ | X              |          |         | 0214                                                                   |
| TB-04-04-5 \$114105 700 PQ 2 40L V                                                                        | ${}$          | *        | ****           | <u> </u> |         | 20-                                                                    |
|                                                                                                           |               |          |                |          |         |                                                                        |
|                                                                                                           | <del>  </del> |          |                |          |         |                                                                        |
| SAMPLING COMPLETED HIT OF 1500 PERFORMED BY Chris Dav                                                     | /is           | _!!      |                |          |         | RESULTS NEEDED  NO LATER THAN Standard TAT                             |
| RELEASED BY MSD WIS                                                                                       |               | ITIME    | 15             | Real     | IVED BY | DATE   TIME                                                            |
| RELEASED BY                                                                                               |               | TIME     | 735            | RECE     | VED BY  | DATE TIME                                                              |
| RELEASED BY                                                                                               |               | TIME     | 22             | RECE     | AED BA  | DATE TIME                                                              |
| SHIPPED VIA                                                                                               |               | TIME     | SENT           | COOL     | ER#     |                                                                        |

# Applied P & CH Laboratories

13760 Magnolia Ave., Chino CA 91710
Tel: (909) 590-1828 Fax: (909) 590-1498

\*HT:

Documentfile: [acel.tentiles]empsel.tex.

# Sample Receiving Checklist

| APCL ServiceID: 2314 Client Name/Project: Parsons                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Sample Arrival                                                                                                                                                                                                              |
| Date/Time Received 41405 1735 Date/Time Opened 411405 1735 By (name) Joseph N                                                                                                                                                  |
| Custody Transfer: 🗆 Client 🗀 Golden State 🗀 UPS 🗀 US Mail 🗀 FedEx 📈 APCL Empl:                                                                                                                                                 |
| 2. Chain-of-Custody (CoC)                                                                                                                                                                                                      |
| Swith Samples?                                                                                                                                                                                                                 |
| 3. Shipping Container/Cooler                                                                                                                                                                                                   |
| Cooler Used? # of 2 Cooled by: Stice Blue Ice Dry Ice None                                                                                                                                                                     |
| (Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal? $\Box$ Absent $\Box$ Intact $\Box$ Tampered?                                                                |
| 4. Sample Preservation                                                                                                                                                                                                         |
| □ pH <2 □ pH >12  If Not, pH = Preserved by: □ Client □ APCL □ Third Party                                                                                                                                                     |
| 5. Holding-time Requirements                                                                                                                                                                                                   |
| ☐ pH 24hr ☐ BACT 6/24hr ☐ Cr <sup>V I</sup> 24hr ☐ NO <sub>3</sub> 48hr ☐ BOD 48hr ☐ Cl <sub>2</sub> ASAP ☐ Turbidity 48hr ☐ DO ASAP ☐ Fe(II) ASAP ☐ HT Expired? ☐ Client notified?                                            |
| 6. Sample Container Condition                                                                                                                                                                                                  |
| SkIntact? Broken? Anomalies Documented?                                                                                                                                                                                        |
| Type: Pastic Palass Tube: brass/SS Tedlar Bag                                                                                                                                                                                  |
| Quantity OK? 🗀 Leaking? 🔑 Appropriate for specific method?                                                                                                                                                                     |
| Labels: Unique ID? Date/Time  Label and ink intact?                                                                                                                                                                            |
| 7. Turn Around Time                                                                                                                                                                                                            |
| MRUSH TAT: □ Std (7-10 days) □ Not Marked                                                                                                                                                                                      |
| 8. Sample Matrix                                                                                                                                                                                                               |
| ☐ Drinking H₂Ok Other Liq ☐ Soil ☐ Wipe ☐ Polymer ☐ Air ☐ Other:<br>☐ Ground H₂O ☐ Sludge ☐ Filter ☐ Oil/Petro ☐ Paint ☐ W. Water ☐ Extract ☐ Unknown                                                                          |
| ☐ Ground H <sub>2</sub> O ☐ Sludge ☐ Filter ☐ Oil/Petro ☐ Paint ☐ W. Water ☐ Extract ☐ Unknown                                                                                                                                 |
| 9. Pre-Login Check List Completed & OK?                                                                                                                                                                                        |
| ALL OK? (if not, see SOP C-11) Client Contact? (Name:)Date/Time:                                                                                                                                                               |
| Received/Checked by: Printed: 14 Apr 2005 7:19 a.m.                                                                                                                                                                            |
| Samples must be analyzed for results to reflect total concentrations. Results generated outside required of holding times are considered minimal values and may be used to define waste as juzardous but not as non-hazardous. |

#### Applied P & CH Laboratories Organic Analysis Results for Method SW8270C

Project No:

Prep. No:

TT -14

OAC N

Client Name: Parsons Engineering Science Project ID: Camp Pendleton Area 22 05G1855-MB-01 Sample ID: Sample Type: Method Blank SW8270C Anal. Method: Batch No: 05G1855

Service ID: 52314 Lab Sample ID: 05G1855-MB-01 Received Date: Sample Matrix Water Prep. Method: 3510 Prep. Date: 04/20/05

Sample Amount: 1000 mL

933868

1 of 1

Moisture %: Instrument ID: GC/MS: Y Anal. Date: 04/26/05 Anal. Time: 12:03 Dilution Factor: 1

Collection Date: 04/20/2005

04/20/2005

0 110

Collected by:

| Data File<br>Extract V | Name: G1855K01<br>/ol. 1.0 mL |
|------------------------|-------------------------------|
| #                      | Component Name                |
| 1                      | ACENAPHTHENE                  |
| 2                      | ACENAPHTHYLEN                 |
|                        |                               |

| #    | Component Name         | CAS No                                         | Unit                           | RL               | Result       | Qualifier |
|------|------------------------|------------------------------------------------|--------------------------------|------------------|--------------|-----------|
| 1    | ACENAPHTHENE           | 83-32-9                                        | μg/L                           | 10               | < 10         | U         |
| 2    | ACENAPHTHYLENE         | 208-96-8                                       | $\mu g/L$                      | 10               | < 10         | U         |
| 3    | ANTHRACENE             | 120-12-7                                       | $_{\mu \mathrm{g/L}}$          | 10               | < 10         | U         |
| 4    | BENZ(A)ANTHRACENE      | 56-55-3                                        | $_{\mu \mathbf{g}}/\mathrm{L}$ | 10               | < 10         | U         |
| 5    | BENZO(A)PYRENE         | 50-32-8                                        | $_{\mu \mathrm{g}}/\mathrm{L}$ | 10               | < 10         | U         |
| 6    | BENZO(B)FLUORANTHENE   | 205-99-2                                       | $\mu g/L$                      | 10               | < 10         | U         |
| 7    | BENZO(G,H,I)PERYLENE   | 191-24-2                                       | $\mu g/L$                      | 10               | < 10         | บ         |
| 8    | BENZO(K)FLUORANTHENE   | 207-08-9                                       | $_{\mu}\mathrm{g/L}$           | 10               | < 10         | U         |
| 9    | CHRYSENE               | 218-01-9                                       | $\mu g/L$                      | 10               | < 10         | U         |
| 10   | DIBENZ(A,H)ANTHRACENE  | 53-70-3                                        | $\mu g/L$                      | 10               | < 10         | U         |
| 11   | FLUORANTHENE           | 206-44-0                                       | $_{\mu}\mathrm{g/L}$           | 10               | <10          | U         |
| 12   | FLUORENE               | 86-73-7                                        | $\mu g/L$                      | 10               | <10          | U         |
| 13   | INDENO(1,2,3-CD)PYRENE | 193-39-5                                       | $\mu g/L$                      | 10               | < 10         | U         |
| 14   | 2-METHYLNAPHTHALENE    | 91-57-6                                        | $_{\mu}\mathrm{g}/\mathrm{L}$  | 10               | < 10         | U         |
| 15   | NAPHTHALENE            | 91-20-3                                        | $\mu \mathrm{g}/\mathrm{L}$    | 10               | < 10         | U         |
| 16   | PHENANTHRENE           | 85-01-8                                        | $_{\mu}\mathrm{g/L}$           | 10               | < 10         | U         |
| 17   | PYRENE                 | 129-00-0                                       | $_{\mu\mathrm{g}/\mathrm{L}}$  | 10               | < 10         | U         |
| Surr | ogates                 | <u>.                                      </u> |                                | Control Limit, % | Surro. Rec.% |           |
| 1    | 2-FLUOROBIPHENYL       | 321-60-8                                       |                                | 40-129           | 92           |           |
| 2    | 2-FLUOROPHENOL         | 367-12-4                                       |                                | 20-119           | 48           |           |
| 3    | NITROBENZENE-D5        | 4165-60-0                                      |                                | 40-128           | 69           |           |
| 4    | PHENOL-D5              | 4165-62-2                                      |                                | 10-110           | 26           |           |
| 5    | TERPHENYL-D14          | 1718-51-0                                      |                                | 40-134           | 71           |           |
| 6    | 2,4,6-TRIBROMOPHENOL   | 118-79-6                                       |                                | 20-129           | 93           |           |
| # of | f out-of-control       |                                                |                                |                  | 0            |           |
| Inte | rnal Standard          |                                                |                                | Control Limit, % | IS Rec.%     |           |
| 1    | ACENAPHTHENE-D10       | 15067-26-2                                     |                                | 50-200           | 75           |           |
| 2    | CHRYSENE-D12           | 1719-03-5                                      |                                | 50-200           | 151          |           |
| 3    | 1,4-DICHLOROBENZENE-D4 | 3855-82-1                                      |                                | 50-200           | 110          |           |
| 4    | NAPHTHALENE-D8         | 1146-65-2                                      |                                | 50-200           | 109          |           |
| 5    | PERYLENE-D12           | 1520-96-3                                      |                                | 50-200           | 87           |           |
| 6    | PHENANTHRENE-D10       | 1517-22-2                                      |                                | 50-200           | 108          |           |
| 4 0  | fout-of-control        |                                                |                                |                  | 0            |           |

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Qualifier: U - Not Detected or less than MDL/IDL

F - Positively identified, but Less than RL

M - A matrix effect was present

T - TIC by GC/MS

E - Exceed calibration range

B - Analyte is detected in the associated method blank

J - Positively identified, the quantitaion is estimated

R - unusable due to deficiencies

#### FORM-2C

#### Applied P & CH Laboratories

# Surrogate Recovery Summary for Method SW8270C

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

052314

Project ID:

Camp Pendleton Area 22

Project No:

933868

Sample Matrix:

Water

Batch No: 05G1855

|    | Client         | Lab            | <b>S</b> 1  | S2         | 53  | S4       | S5            | S6  | тот |
|----|----------------|----------------|-------------|------------|-----|----------|---------------|-----|-----|
| #  | Sample No      | Sample ID      | % #         | % #        | % # | % #      | % #           | % # | OUT |
| 1  | 05G1855-LCS-01 | 05G1855-LCS-01 | 54          | 41         | 55  | 29       | 61            | 79  | 0   |
| 2  | 05G1855-LSD-01 | 05G1855-LSD-01 | 51          | 42         | 55  | 29       | 59            | 77  | 0   |
| 3  | 05G1855-MB-01  | 05G1855-MB-01  | 92          | 48         | 69  | 26       | 71            | 93  | 0   |
| 4  | MW22187-5-0405 | 05-2314-1      | 91          | 47         | 81  | 28       | 72            | 120 | 0   |
| 5  |                |                |             |            |     |          |               |     |     |
| 6  |                |                |             |            |     |          |               |     |     |
| 7  |                |                |             |            |     | •        |               |     |     |
| 8  |                |                |             |            |     |          |               |     |     |
| 9  |                |                |             |            |     |          |               |     |     |
| 10 |                |                |             |            |     |          |               |     |     |
| 11 |                |                |             |            |     |          |               |     |     |
| 12 |                |                |             |            |     |          |               |     |     |
| 13 |                |                |             |            |     |          |               |     |     |
| 14 |                |                |             |            |     |          |               |     |     |
| 15 |                |                |             |            |     |          |               |     |     |
| 16 |                |                |             |            |     |          |               |     |     |
| 17 |                |                |             |            |     |          |               |     |     |
| 18 |                |                |             |            |     |          |               |     |     |
| 19 |                |                |             |            |     |          |               |     |     |
| 20 |                |                |             |            |     |          |               |     |     |
| 21 |                |                |             |            |     |          |               |     |     |
| 22 |                |                |             |            |     |          |               |     |     |
| 23 |                |                |             |            |     |          |               |     |     |
| 24 |                | 1              |             |            |     | T        |               |     |     |
| 25 |                |                |             |            |     | <u> </u> |               |     |     |
| _  |                |                | <del></del> | <b>-</b> 1 |     | 000      | <del></del> - |     |     |

QC Control Limit

S1 = 2-FLUOROBIPHENYL 40-129 S2 = 2-FLUOROPHENOL20-119 S3 = NITROBENZENE-D5 40-128 S4 = PHENOL-D5 10-110 S5 = TERPHENYL-D14 40-134 S6 = 2,4,6-TRIBROMOPHENOL 20-129

Tele: (909)590-1828×228

# Column to be used to flag recovery values:

\* - Values outside of contract required QC Limits

D - Surrogate diluted out

I - Matrix Interference

#### FORM-3C

#### Applied P & CH Laboratories

## Lab Control Spike/Lab Control Spike Duplicate Recovery for Method SW8270C

Client Name:

Parsons Engineering Science

Contract No:

Lab Code: Service ID:

APCL 52314

Case No:

Camp Pendleton Area 22

Project No:

SAS No:

933868

Sample Matrix:

Water

Project ID:

Batch No: 05G1855

Time Analyzed:

10:46

LCS Filename:

G1855L01

Date Analyzed: 042605

Time Analyzed:

LCSD Filename: G1855J01

Date Analyzed: 042605

11:25

| Spiked                    |                      | Spike | Concentr | ation | LCS    | QC Limit, % |
|---------------------------|----------------------|-------|----------|-------|--------|-------------|
| Components                | Unit                 | Added | Unspiked | LCS   | Rec% # | REC         |
| ACENAPHTHENE              | $\mu g/L$            | 50    | 0        | 39.5  | 79     | 40-112      |
| 4-CHLORO-3-METHYLPHENOL   | μg/L                 | 100   | 0        | 82.4  | 82     | 41-105      |
| 2-CHLOROPHENOL            | $\mu \mathrm{g/L}$   | 100   | 0        | 60.6  | 61     | 44-102      |
| 1,4-DICHLOROBENZENE       | $\mu g/L$            | 50    | 0        | 33.0  | 66     | 40-106      |
| 2,4-DINITROTOLUENE        | $_{\mu\mathrm{g/L}}$ | 50    | 0        | 46.5  | 93     | 40-117      |
| 4-NITROPHENOL             | μg/L                 | 500   | 0        | 121   | 24     | 18-144      |
| N-NITROSODI-N-PROPYLAMINE | μg/L                 | 50    | 0        | 28.5  | 57     | 45-113      |
| PENTACHLOROPHENOL         | μg/L                 | 500   | 0        | 379   | 76     | 27-138      |
| PHENOL                    | μg/L                 | 100   | 0        | 33.4  | 33     | 32-102      |
| PYRENE                    | μg/L                 | 50    | 0        | 37.1  | 74     | 40-119      |
| 1,2,4-TRICHLOROBENZENE    | μg/L                 | 50    | 0        | 41.0  | 82     | 40-108      |
| # of Out-of-control       | •                    |       |          | •     | 0      |             |

| Spiked                    |                    | Spike | LCSD          | LCSD   |        | QC  | Limit, % |
|---------------------------|--------------------|-------|---------------|--------|--------|-----|----------|
| Components                | Unit               | Added | Concentration | Rec% # | RPD% # | RPD | REC      |
| ACENAPHTHENE              | μg/L               | 50    | 40.1          | 80     | 1      | 39  | 40-112   |
| 4-CHLORO-3-METHYLPHENOL   | $\mu g/L$          | 100   | 84.4          | 84     | 2      | 36  | 41-105   |
| 2-CHLOROPHENOL            | $\mu g/L$          | 100   | 59.5          | 60     | 2      | 36  | 44-102   |
| 1,4-DICHLOROBENZENE       | μg/L               | 50    | 32.8          | 66     | 0      | 37  | 40-106   |
| 2,4-DINITROTOLUENE        | μg/L               | 50    | 46.0          | 92     | 1      | 40  | 40-117   |
| 4-NITROPHENOL             | μg/L               | 500   | 114           | 23     | 4      | 65  | 18-144   |
| N-NITROSODI-N-PROPYLAMINE | μg/L               | 50    | 27.9          | 56     | 2      | 39  | 45-113   |
| PENTACHLOROPHENOL         | μg/L               | 500   | 398           | 80     | 5      | 61  | 27-138   |
| PHENOL                    | $\mu \mathrm{g/L}$ | 100   | 33.9          | 34     | 3      | 36  | 32-102   |
| PYRENE                    | μg/L               | 50    | 36.1          | 72     | 3      | 38  | 40-119   |
| 1,2,4-TRICHLOROBENZENE    | μg/L               | 50    | 41.3          | 83     | 1      | 35  | 40-108   |
| # of Out-of-control       |                    | •     | <u> </u>      | 0      | 0      |     |          |

<sup>#</sup> Column to be used to flag recovery and RPD values:

\* - Values outside of contract required QC Limits

D - Spiked components diluted out

| Comments: | <br> |
|-----------|------|
|           | <br> |
|           |      |
|           |      |
|           |      |

#### FORM-4B

#### Applied P & CH Laboratories

# Method Blank Summary for Method SW8270C

Client Name: Parsons Engineering Science Contract No: SAS No:

Lab Code:

APCL

Case No:

Project No:

Service ID:

52314 04/26/05

Project ID:

Camp Pendleton Area 22

933868

Analysis Date: Analysis Time:

12:03

Sample ID:

05G1855-MB-01

Sample Matrix: Water

Instrument ID:

GC/MS: Y

Lab Sample ID: 05G1855-MB-01

Batch No: 05G1855 Data File Name: G1855K01

GC Column: Column ID:

DB-5.625 0.25 mm

#### This Method Blank applies to the following samples and QC samples:

|    | Client         | Lab          |                             | Data     | Analysis | Analysis |
|----|----------------|--------------|-----------------------------|----------|----------|----------|
| #  | Sample No      | Sample ID    | Sample Type                 | Filename | Date     | Time     |
| 1  |                | 05G1855LCS01 | Lab Control Spike           | G1855L01 | 04/26/05 | 10:46    |
| 2  |                | 05G1855LSD01 | Lab Control Spike Duplicate | G1855J01 | 04/26/05 | 11:25    |
| 3  | MW22187-5-0405 | 05-2314-1    | Field Sample                | 2314-01A | 04/27/05 | 18:47    |
| 4  |                |              |                             |          |          |          |
| 5  |                |              |                             |          |          |          |
| 6  |                |              |                             |          |          | ·        |
| 7  |                |              |                             |          |          |          |
| 8  |                |              |                             |          |          |          |
| 9  |                |              |                             |          |          |          |
| 10 |                |              |                             |          |          |          |
| 11 |                |              |                             |          |          |          |
| 12 | ·              |              |                             |          |          |          |
| 13 |                |              |                             |          |          |          |
| 14 |                |              |                             |          | ł        |          |
| 15 |                |              |                             |          |          |          |
| 16 |                |              |                             |          |          |          |
| 17 |                |              |                             |          |          |          |
| 18 |                | •            |                             | 1        |          |          |
| 19 |                |              |                             |          |          |          |
| 20 |                |              |                             |          |          |          |
| 21 |                |              |                             |          |          |          |
| 22 |                |              |                             |          |          |          |
| 23 |                | T            |                             |          |          |          |
| 24 |                |              |                             |          |          |          |
| 25 |                |              |                             |          |          |          |

### Applied P & CH Laboratories Organic Analysis Results for Method M8015E

Client Name: Project ID:

Parsons Engineering Science

05G1832-MB-01

Project No: Service ID:

933868 52314

Collection Date: 04/18/2005

Collected by:

Sample ID:

Camp Pendleton Area 22

Lab Sample ID: Sample Matrix

05G1832-MB-01 Received Date:

04/18/2005

Moisture %:

Sample Type: Anal. Method: Method Blank M8015E

Prep. Method: Prep. Date: Prep. No:

3510 04/18/05 l of l

Water

Instrument ID: GC: W Anal. Date:

04/21/05 12:08

Batch No: Data File Name: 1832G.K01 Extract Vol.

05G1832 1.0 mL

Sample Amount: 1000 mL

Anal. Time:

Dilution Factor: 1

| #     | Component Name  | CAS No   | Unit | RL               | Result       | Qualifier |
|-------|-----------------|----------|------|------------------|--------------|-----------|
| 1     | DIESEL          | 11-84-7  | mg/L | 0.1              | < 0.1        | . О       |
| Surre | ogates          |          |      | Control Limit, % | Surro. Rec.% |           |
| 1     | OCTACOSANE, C28 | 630-02-4 |      | 57-139           | 82           |           |
| # of  | out-of-control  |          |      |                  | 0            |           |

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Qualifier: U - Not Detected or less than MDL/IDL

F - Positively identified, but Less than RL

M - A matrix effect was present

T - TIC by GC/MS

E - Exceed calibration range

B - Analyte is detected in the associated method blank

J - Positively identified, the quantitaion is estimated

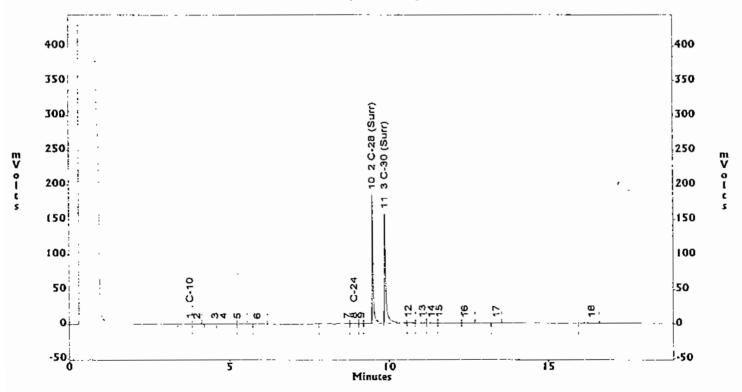
R - unusable due to deficiencies

#### Applied P & Ch Lab

Total Extractable Petroleum Hydrocarbon Analysis by GC-FID Instrument ID: GC-W, Column: DB-1 (0.32mm x 15m x 0.25 um), Jul

Sample ID : mb f=0.001

Vial : 1 Volume : 2


Acquired : Apr 21, 2005 12:08:32 Printed : Apr 21, 2005 12:49:46

User : Linda Liang File Desc. : Continue

#### Channel A Results

| Name             | Time  | Area    | AVE RF    | Conc (ppm) |
|------------------|-------|---------|-----------|------------|
|                  |       |         |           |            |
| C-10             | 3.77  | 3420    | 0.000     | 0.000      |
| C-16             | 6.63  | 0       | 0.000     | 0.000      |
| C-22             | 8.32  | 0       | 0.000     | 0.000      |
| C-24             | 8.90  | 2938    | 0.000     | 0.000      |
| 2 C-28 (Surr)    | 9.48  | 439111  | 10757.817 | 40.818     |
| 3 C-30 (Surr)    | 9.88  | 509368  | 10638.618 | 47.879     |
| C-36             | 12.12 | 0       | 0.000     | 0.000      |
| 1 Diesel cl0-c24 |       | 25025   | 12992.507 | 1.926      |
| 4 Motor oil c24- | ·c36  | . 75701 | 5674.990  | 13.339     |
| 5 JP5 c8-cl6     |       | 22292   | 12037.801 | 1.852      |

#### c:\data\0504\dsl2w\05g1832\1832g.k01 -- Channel A



## FORM-2C

## Applied P & CH Laboratories

## Surrogate Recovery Summary for Method M8015E

Client Name: Parsons Engineering Science Contract No: Lab Code: APCL Case No: SAS No: SDG Number: 052314
Project ID: Camp Pendleton Area 22 Project No: 933868 Sample Matrix: Water

Batch No: 05G1832

|    | Client                                           | Lab                                   | S1           | тот |
|----|--------------------------------------------------|---------------------------------------|--------------|-----|
| #  | Sample No                                        | Sample ID                             | % #          | OUT |
| 1  | 05G1832-LCS-01                                   | 05G1832-LCS-01                        | 110          | 0   |
| 2  | 05G1832-LSD-01                                   | 05G1832-LSD-01                        | 110          | 0   |
| 3  | MW43302-6-0405MS                                 | 05-2282-4MS                           | 95           | 0   |
| 4  | MW43302-6-0405MSD                                | 05-2282-4MSD                          | 96           | 0   |
| 5  | 05G1832-MB-01                                    | 05G1832-MB-01                         | 82           | 0   |
| 6  | MW22187-5-0405                                   | 05-2314-1                             | 86           | 0   |
| 7  | MW22187-6-0405                                   | 05-2314-2                             | 86           | 0   |
| 8  | MW22187-7-0405                                   | 05-2314-3                             | 102          | 0   |
| 9  | MW22187-8-0405                                   | 05-2314-4                             | 95           | 0   |
| 10 | MW22187-10A-0405                                 | 05-2314-5                             | 105          | 0   |
| 11 |                                                  |                                       |              |     |
| 12 |                                                  |                                       |              |     |
| 13 |                                                  |                                       |              |     |
| 14 |                                                  |                                       |              |     |
| 15 |                                                  |                                       |              | Į.  |
| 16 |                                                  | · · · · · · · · · · · · · · · · · · · |              |     |
| 17 |                                                  |                                       |              |     |
| 18 |                                                  |                                       |              |     |
| 19 |                                                  |                                       |              |     |
| 20 |                                                  |                                       |              |     |
| 21 |                                                  |                                       |              |     |
| 22 | ļ · · · · · · ·                                  |                                       |              | 1   |
| 23 |                                                  |                                       | 1            | 1   |
| 24 | <del>                                     </del> | <del> </del>                          |              | 1   |
| 25 |                                                  | <del> </del>                          | <del> </del> | -   |

QC Control Limit

S1 = N-OCTACOSANE

57-139

# Column to be used to flag recovery values:

\* - Values outside of contract required QC Limits D - Surrogate diluted out I - Matrix Interference

#### FORM-3C

## Applied P & CH Laboratories

## Lab Control Spike/Lab Control Spike Duplicate Recovery for Method M8015E

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

Project No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

933868

Sample Matrix:

Water

LCS Filename:

1832G.L01

Batch No: 05G1832 Date Analyzed: 042105

Time Analyzed:

10:27

LCSD Filename: 1832G.J01

Date Analyzed: 042105

Time Analyzed:

10:52

| Spiked          |       | Spike | Concentr | ation | LCS    | QC Limit, % |
|-----------------|-------|-------|----------|-------|--------|-------------|
| Components      | Unit  | Added | Unspiked | LCS   | Rec% # | REC         |
| DIESEL          | mg/L  | l     | 0        | 0.967 | 97     | 56-129      |
| # of Out-of-con | itrol | 0     |          |       |        |             |

| Spiked          |       | Spike | LCSD          | LCSD   |        | QC Limit, % |
|-----------------|-------|-------|---------------|--------|--------|-------------|
| Components      | Unit  | Added | Concentration | Rec% # | RPD% # | RPD REC     |
| DIESEL          | mg/L  | 1     | 0.954         | 95     | 2      | 49 56-129   |
| # of Out-of-con | itrol |       |               | 0      | 0      |             |

| # | Column | to | be | uscd | to | flag | recovery | and | RPD | values: |
|---|--------|----|----|------|----|------|----------|-----|-----|---------|
|   |        |    |    |      |    |      |          |     |     |         |

| * - | Values | outside | of | contract | required | QC | Limits |
|-----|--------|---------|----|----------|----------|----|--------|
|-----|--------|---------|----|----------|----------|----|--------|

| Comments: |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |
|           |  |  |

D - Spiked components diluted out

## FORM-3C

#### Applied P & CH Laboratories

## Matrix Spike/Matrix Spike Duplicate Recovery for Method M8015E

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

Project No:

933868 Sample Matrix: Water

Batch No:

05G1832

Time Analyzed:

11:17

MS Filename: MSD Filename: 1832G.N01

1832G.M01

Date Analyzed: 042105

Time Analyzed:

Date Analyzed: 042105

11:43

MS Sample No: MW43302-6-0405

Sample Lab ID: 05-2282-4

| Spiked          |       | Spike | Concentra | ation | MS     | QC Limit, % |
|-----------------|-------|-------|-----------|-------|--------|-------------|
| Components      | Unit  | Added | Unspiked  | MS    | Rec% # | REC         |
| DIESEL          | mg/L  | 0.962 | 5.1       | 5.47  | 38 *   | 41-138      |
| # of Out-of-cor | itrol |       |           |       | 1      |             |

| Spiked          |                     | Spike | MSD           | MSD    |        | QC Limit, % |
|-----------------|---------------------|-------|---------------|--------|--------|-------------|
| Components      | Unit                | Added | Concentration | Rec% # | RPD% # | RPD REC     |
| DIESEL          | mg/L                | 0.962 | 5.27          | 18 *   | 4      | 49 41-138   |
| # of Out-of-con | # of Out-of-control |       |               |        | 0      |             |

# Column to be used to flag recovery and RPD values:

\* - Values outside of contract required QC Limits

D - Spiked components diluted out

| Comments: |  | <br> |
|-----------|--|------|
|           |  |      |
|           |  |      |

# Applied P & CH Laboratories Organic Analysis Results for Method RSK175

Client Name: Parsons Engineering Science Project No: 933868 Collection Date: 04/20/2005 Project ID: Camp Pendleton Area 22 Service ID: 52314 Collected by: Lab Sample ID: 05G1854-MB-01 Received Date: 04/20/2005 Sample ID: 05G1854-MB-01 Sample Matrix Water Moisture %: Sample Type: Method Blank Prep. Method: Instrument ID: GC: K Anal. Method: RSK175 Anal. Date: Prep. Date: 04/20/05 Batch No: 05G1854 Prep. No: Anal. Time: 14:13 Data File Name: 1854G.K01 Sample Amount: 33 mL Dilution Factor: 1

Extract Vol.

| # | Component Name | CAS No  | Unit                  | RL | Result | Qualifier |
|---|----------------|---------|-----------------------|----|--------|-----------|
| 1 | METHANE        | 74-82-8 | $_{\mu \mathrm{g/L}}$ | 3  | <3     | ซ`        |
| 2 | ETHANE         | 74-84-0 | $_{\mu \mathrm{g/L}}$ | 3  | <3     | U         |
| 3 | ETHENE         | 74-85-1 | $_{\mu}\mathrm{g/L}$  | 3  | <3     | U         |

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Qualifier: U - Not Detected or less than MDL/IDL

F - Positively identified, but Less than RL

M - A matrix effect was present

T - TIC by GC/MS

E - Exceed calibration range

B - Analyte is detected in the associated method blank

J - Positively identified, the quantitaion is estimated

R - unusable due to deficiencies

#### FORM-3C

## Applied P & CH Laboratories

## Lab Control Spike/Lab Control Spike Duplicate Recovery for Method RSK175

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

Project No:

933868 05G1854 Sample Matrix:

Water

LCS Filename:

1854G.L01

Batch No: Date Analyzed: 042005

Time Analyzed:

13:51

LCSD Filename: 1854G.J01

Date Analyzed: 042005

Time Analyzed:

13:54

| Spiked         |                               | Spike | Concentr | ation | LCS    | QC Limit, % |
|----------------|-------------------------------|-------|----------|-------|--------|-------------|
| Components     | Unit                          | Added | Unspiked | LCS   | Rec% # | REC         |
| METHANE        | $_{\mu\mathrm{g}}/\mathrm{L}$ | 19.8  | 0        | 17.8  | 90     | 65-122      |
| ETHANE         | μg/L                          | 37.3  | 6        | 29.3  | 79     | 66-124      |
| ETHENE         | μg/L                          | 34.8  | 0        | 32.5  | 93     | 65-122      |
| # of Out-of-co | ntrol                         | •     |          | •     | 0      |             |

| ٠ [ | Spiked          |                       | Spike | LCSD          | LCSD   |        | QC Limit, % |
|-----|-----------------|-----------------------|-------|---------------|--------|--------|-------------|
| L   | Components      | Unit                  | Added | Concentration | Rec% # | RPD% # | RPD REC     |
|     | METHANE         | $_{\mu \mathrm{g/L}}$ | 19.8  | 17.4          | 88     | 2      | 34 65-122   |
| Γ   | ETHANE          | μg/L                  | 37.3  | 28.6          | 77     | 3      | 25 66-124   |
| ſ   | ETHENE          | $_{\mu}\mathrm{g/L}$  | 34.8  | 31.8          | 91     | 2      | 22 65-122   |
|     | # of Out-of-cor | itrol                 |       | 0             | 0      |        |             |

| # Column to be used to flag recovery and RPD value | # | Column | to be | used | to | flag | recovery | and | RPD | value |
|----------------------------------------------------|---|--------|-------|------|----|------|----------|-----|-----|-------|
|----------------------------------------------------|---|--------|-------|------|----|------|----------|-----|-----|-------|

| * | _ | Value   | outeida | ۸ſ | contract | roonired | OC  | Limit |
|---|---|---------|---------|----|----------|----------|-----|-------|
| • | _ | v annes | ouisiae | о  | contract | reamrea  | UL. | Limit |

| Comments: |   |  |  |
|-----------|---|--|--|
|           | _ |  |  |
|           |   |  |  |

D - Spiked components diluted out

#### FORM-3C

#### Applied P & CH Laboratories

## Matrix Spike/Matrix Spike Duplicate Recovery for Method RSK175

Client Name: Parsons Engineering Science Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

Project No: Batch No:

933868 Sample Matrix: Water

MS Filename:

1854G.M01

Date Analyzed: 042005

Time Analyzed:

15:16

MSD Filename: 1854G.N01

Date Analyzed: 042005

Time Analyzed:

15:19

MS Sample No: MW22187-10A-0405

05G1854

Sample Lab ID: 05-2314-5

QC Limit, % Concentration MS Spiked Spike Components Unit Added Unspiked MS Rec% # REC METHANE 19.8 0 16.9 85 65-132  $\mu g/L$ ETHANE 74 37.3 0 27.6 69-118  $\mu {
m g/L}$ ETHENE 0 30.9 89 72-112  $\mu g/L$ 34.8 # of Out-of-control 0

| Spiked         |                      | Spike | MSD           | MSD    |        | QC Limit, % |
|----------------|----------------------|-------|---------------|--------|--------|-------------|
| Components     | Unit                 | Added | Concentration | Rec% # | RPD% # | RPD REC     |
| METHANE        | $_{\mu}\mathrm{g/L}$ | 19.8  | 16.7          | 84     | 1      | 34 65-132   |
| ETHANE         | μg/L                 | 37.3  | 27.6          | 74     | 0      | 25 69-118   |
| ETHENE         | μg/L                 | 34.8  | 30.7          | 88     | 1      | 22 72-112   |
| # of Out-of-co | ntrol                |       |               | 0      | 0      |             |

<sup>#</sup> Column to be used to flag recovery and RPD values:

| Comments:      |  |  |   |  |
|----------------|--|--|---|--|
| 02111111011011 |  |  | · |  |
|                |  |  |   |  |

<sup>\* -</sup> Values outside of contract required QC Limits

D - Spiked components diluted out

## Applied P & CH Laboratories Wet Analysis Results for Method 310.1

Client Name: Parsons Engineering Science

Project No:

933868

Anal. Method

310.1

Project ID:

Camp Pendleton Area 22

Service ID:

52314

Collected by:

CD

Component Name: Alkalinity CAS No: 10-09-3

| Lab ID        | Sample ID        | Matrix | Coll. Date | Rcv Date | Anal. Date | Batch   | Unit | RL | Result | Q |
|---------------|------------------|--------|------------|----------|------------|---------|------|----|--------|---|
| 05-2314-1     | MW22187-5-0405   | Water  | 04/14/05   | 04/14/05 | 04/18/05   | 05W2105 | mg/L | 2  | 520    |   |
| 05-2314-2     | MW22187-6-0405   | Water  | 04/14/05   | 04/14/05 | 04/18/05   | 05W2105 | mg/L | 2  | 520    |   |
| 05-2314-3     | MW22187-7-0405   | Water  | 04/14/05   | 04/14/05 | 04/18/05   | 05W2105 | mg/L | 2  | 360    |   |
| 05-2314-4     | MW22187-8-0405   | Water  | 04/14/05   | 04/14/05 | 04/18/05   | 05W2105 | mg/L | 2  | 190    |   |
| 05-2314-5     | MW22187-10A-0405 | Water  | 04/14/05   | 04/14/05 | 04/18/05   | 05W2105 | mg/L | 2  | 550    |   |
| 05W2105-MB-01 | 05W2105-MB-01    | Water  | 04/18/05   | 04/18/05 | 04/18/05   | 05W2105 | mg/L | 2  | < 2    | U |

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

## Applied P & CH Laboratories

## Wet Analysis Results for Method SM3500DFE-

Client Name: Parsons Engineering Science Project ID: Camp Pendleton Area 22 Project No: 933868 Service ID: 52314 Anal. Method

SM3500DFE-

Collected by: CD

Component Name: Iron (II)

CAS No:

| Lab ID        | Sample ID        | Matrix | Coll. Date | Rcv Date | Anal. Date | Batch   | Unit | RL   | Result | Q |
|---------------|------------------|--------|------------|----------|------------|---------|------|------|--------|---|
| 05-2314-1     | MW22187-5-0405   | Water  | 04/14/05   | 04/14/05 | 04/14/05   | 05W2055 | mg/L | 0.05 | 0.061  |   |
| 05-2314-2     | MW22187-6-0405   | Water  | 04/14/05   | 04/14/05 | 04/14/05   | 05W2055 | mg/L | 0.05 | < 0.05 | U |
| 05-2314-3     | MW22187-7-0405   | Water  | 04/14/05   | 04/14/05 | 04/14/05   | 05W2055 | mg/L | 0.05 | 0.17   |   |
| 05-2314-4     | MW22187-8-0405   | Water  | 04/14/05   | 04/14/05 | 04/14/05   | 05W2055 | mg/L | 0.05 | 0.17   |   |
| 05-2314-5     | MW22187-10A-0405 | Water  | 04/14/05   | 04/14/05 | 04/14/05   | 05W2055 | mg/L | 0.05 | 0.18   |   |
| 05W2055-MB-01 | 05W2055-MB-01    | Water  | 04/14/05   | 04/14/05 | 04/14/05   | 05W2055 | mg/L | 0.05 | < 0.05 | U |

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

## Applied P & CH Laboratories

## Wet Analysis Results for Method 300.0

Client Name: Parsons Engineering Science

Project No:

933868 Anal. Method

300.0

Project ID:

Camp Pendleton Area 22

Service ID:

52314

Collected by:

CD

Component Name: Nitrate as N

14797-55-8

| Lab ID        | Sample ID        | Matrix | Coll. Date | Rcv Date | Anal. Date | Batch   | Unit | RL   | Result | Q |
|---------------|------------------|--------|------------|----------|------------|---------|------|------|--------|---|
| 05-2314-1     | MW22187-5-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 6    | 4.2    | F |
| 05-2314-2     | MW22187-6-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 3    | 9.3    |   |
| 05-2314-3     | MW22187-7-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 2.4  | 1.6    | F |
| 05-2314-4     | MW22187-8-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 6    | 7.8    |   |
| 05-2314-5     | MW22187-10A-0405 | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 6    | 3.3    | F |
| 05W2074-MB-01 | 05W2074-MB-01    | Water  | 04/15/05   | 04/15/05 | 04/15/05   | 05W2074 | mg/L | 0.06 | < 0.06 | U |

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

## Applied P & CH Laboratories Wet Analysis Results for Method 300.0

Client Name: Parsons Engineering Science Project ID: Camp Pendleton Area 22

Project No: Service ID:

933868 52314

Anal. Method Collected by:

300.0 CD

Component Name: Sulfate CAS No:

| Lab ID        | Sample ID        | Matrix | Coll. Date | Rcv Date | Anal. Date | Balch   | Unit | RL  | Result | Q |
|---------------|------------------|--------|------------|----------|------------|---------|------|-----|--------|---|
| 05-2314-1     | MW22187-5-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 50  | 360    |   |
| 05-2314-2     | MW22187-6-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 25  | 240    |   |
| 05-2314-3     | MW22187-7-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 20  | 250    |   |
| 05-2314-4     | MW22187-8-0405   | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 50  | 630    |   |
| 05-2314-5     | MW22187-10A-0405 | Water  | 04/14/05   | 04/14/05 | 04/15/05   | 05W2074 | mg/L | 50  | 410    |   |
| 05W2074-MB-01 | 05W2074-MB-01    | Water  | 04/15/05   | 04/15/05 | 04/15/05   | 05W2074 | mg/L | 0.5 | < 0.5  | U |

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

## Applied P & CH Laboratories

## Lab Control Spike/Lab Control Spike Duplicate Recovery for Method 310.1

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

Project No: Batch No:

933868 05W2105 Sample Matrix:

Water

LCS Filename: -

Time Analyzed:

13:26

LCSD Filename: -

Date Analyzed: 041805

Date Analyzed: 041805

Time Analyzed:

13:26

| Spiked            |      | Spike | Concentr | ation | LCS    | QC Limit, % |
|-------------------|------|-------|----------|-------|--------|-------------|
| Components        | Unit | Added | Unspiked | LCS   | Rec% # | REC         |
| ALKALINITY        | mg/L | 100   | 0 ·,     | 101   | 101    | 90-110      |
| # of Out-of-contr | ol   |       |          |       | 0      |             |

| Spiked            |      | Spike | LCSD          | LCSD   |        | QC Limit, % |
|-------------------|------|-------|---------------|--------|--------|-------------|
| Components        | Unit | Added | Concentration | Rec% # | RPD% # | RPD REC     |
| ALKALINITY        | mg/L | 100   | 102           | 102    | 1      | 10 90-110   |
| # of Out-of-contr | ol   |       | 0             | 0      |        |             |

<sup>#</sup> Column to be used to flag recovery and RPD values:

| Comments: |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |

<sup>\* -</sup> Values outside of contract required QC Limits

D - Spiked components diluted out

## Applied P & CH Laboratories

## Lab Control Spike/Lab Control Spike Duplicate Recovery for Method 300.0

Client Name: Parsons Engineering Science Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

Project No:

933868

Water

Batch No:

Sample Matrix: 05W2074

LCS Filename:

Date Analyzed: 041505

Time Analyzed:

10:03

LCSD Filename: -

Date Analyzed: 041505

Time Analyzed:

10:15

| Spiked              |      | Spike | Concentration |      | LCS    | QC Limit, % |
|---------------------|------|-------|---------------|------|--------|-------------|
| Components          | Unit | Added | Unspiked      | LCS  | Rec% # | REC         |
| NITRATE AS N        | mg/L | 1.5   | 0             | 1.49 | 99     | 86-110      |
| SULFATE             | mg/L | 15    | 0             | 14.6 | 97     | 82-110      |
| # of Out-of-control |      |       |               |      | 0      |             |

| Spiked              |      | Spike | LCSD          | LCSD   |        | QC Limit, % |
|---------------------|------|-------|---------------|--------|--------|-------------|
| Components          | Unit | Added | Concentration | Rec% # | RPD% # | RPD REC     |
| NITRATE AS N        | mg/L | 1.5   | 1.50          | 100    | 1      | 13 86-110   |
| SULFATE             | mg/L | 15    | 14.6          | 97     | 0      | 17 82-110   |
| # of Out-of-control |      | 0     | 0             |        |        |             |

<sup>#</sup> Column to be used to flag recovery and RPD values:

| * _ | Values | outside | oſ | contract | required | OC | Limits |
|-----|--------|---------|----|----------|----------|----|--------|
|     |        |         |    |          |          |    |        |

| Comments: | <br>                 | <br> |
|-----------|----------------------|------|
|           | <br>· <del>-</del> · |      |
|           |                      |      |

D - Spiked components diluted out

## Applied P & CH Laboratories

## Matrix Spike/Matrix Spike Duplicate Recovery for Method 300.0

Client Name: Parsons Engineering Science Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

Project No: Batch No:

933868 Sample Matrix: Water

MS Filename:

Date Analyzed: 041505

05W2074

Time Analyzed:

14:25

Date Analyzed: 041505

Time Analyzed:

MSD Filename: -

14:38

MS Sample No: U8-133

Sample Lab ID: 05-2316-2

| Spiked              |      | Spike | Concentration |      | MS    | QC Limit, % |
|---------------------|------|-------|---------------|------|-------|-------------|
| Components          | Unit | Added | Unspiked      | MS   | Rec%# | REC         |
| NITRATE AS N        | mg/L | 37.5  | 19            | 57.2 | 102   | 86-112      |
| SULFATE             | mg/L | 375   | 30            | 403  | 99    | 83-116      |
| # of Out-of-control |      | 0     |               |      |       |             |

| Spiked              |      | Spike | MSD           | MSD    |        | QC Limit, % |
|---------------------|------|-------|---------------|--------|--------|-------------|
| Components          | Unit | Added | Concentration | Rec% # | RPD% # | RPD REC     |
| NITRATE AS N        | mg/L | 37.5  | 51.2          | 86     | 17 *   | 13 86-112   |
| SULFATE             | mg/L | 375   | 341           | 83     | 18 *   | 17 83-116   |
| # of Out-of-control |      |       |               | 0      | 2      |             |

<sup>#</sup> Column to be used to flag recovery and RPD values:

| Comments: | <br> | <br>· |
|-----------|------|-------|
|           |      |       |
|           |      |       |

<sup>\* -</sup> Values outside of contract required QC Limits

D - Spiked components diluted out

## Applied P & CH Laboratories

## Lab Control Spike/Lab Control Spike Duplicate Recovery for Method SM3500DFE-

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52314

Project ID:

Camp Pendleton Area 22

Project No: Batch No:

933868 Sample Matrix: Water

LCS Filename:

Date Analyzed: 041405

05W2055

Time Analyzed:

18:43

LCSD Filename: -

Date Analyzed: 041405

Time Analyzed:

18:43

| Spiked          |                     | Spike | Concentration |       | LCS    | QC Limit, % |
|-----------------|---------------------|-------|---------------|-------|--------|-------------|
| Components      | Unit                | Added | Unspiked      | LCS   | Rec% # | REC         |
| IRON (II)       | mg/L                | 0.5   | 0             | 0.518 | 104    | 80-120 ·    |
| # of Out-of-con | # of Out-of-control |       |               |       |        | _           |

| Spiked              |      | Spike | LCSD          | LCSD   |        | QC Limit, % |
|---------------------|------|-------|---------------|--------|--------|-------------|
| Components          | Unit | Added | Concentration | Rec% # | RPD% # | RPD REC     |
| IRON (II)           | mg/L | 0.5   | 0.522         | 104    | 0      | 25 80-120   |
| # of Out-of-control |      |       |               | 0      | 0      |             |

# Column to be used to flag recovery and RPD values:

| Comments: |  |   |  |
|-----------|--|---|--|
|           |  | • |  |
|           |  |   |  |

<sup>\* -</sup> Values outside of contract required QC Limits

D - Spiked components diluted out

## Applied P & CH Laboratories

## Matrix Spike/Matrix Spike Duplicate Recovery for Method SM3500DFE-

Client Name: Parsons Engineering Science Contract No: SAS No:

Lab Code:

APCL

Case No:

Project No: 933868 Service ID:

52314

Project ID:

Camp Pendleton Area 22

Batch No:

05W2055

Sample Matrix:

Water

MS Filename:

Time Analyzed:

18:43

MSD Filename: -

Date Analyzed: 041405

Date Analyzed: 041405

Time Analyzed:

18:43

MS Sample No: MW1121-11-0405

Sample Lab ID: 05-2313-1

| Spiked          |       | Spike | Concentration |       | MS     | QC Limit, % |
|-----------------|-------|-------|---------------|-------|--------|-------------|
| Components      | Unit  | Added | Unspiked      | MS    | Rec% # | REC         |
| IRON (II)       | mg/L  | 0.5   | 0.50          | 0.904 | 81     | 75-125      |
| # of Out-of-cor | ntrol | 0     |               |       |        |             |

| Spiked              |      | Spike | MSD           | MSD    | _      | QC Limit, % |
|---------------------|------|-------|---------------|--------|--------|-------------|
| Components          | Unit | Added | Concentration | Rec% # | RPD%_# | RPD REC     |
| IRON (II)           | mg/L | 0.5   | 0.908         | 82     | 1      | 25 75-125   |
| # of Out-of-control |      |       |               | 0      | 0      |             |

# Column to be used to flag recovery and RPD values:

\* - Values outside of contract required QC Limits

D - Spiked components diluted out

| Comments: |      |      |  |
|-----------|------|------|--|
|           | <br> | <br> |  |
|           |      |      |  |

## Wet Chemistry QC Report B Duplicate Results

Matrix: Water

APCL Service ID: 05-2314

| Analysis   | Batch ID | Analysis Date | Sample Name | Unit | Result | Duplicate | RPD % | RPD           |
|------------|----------|---------------|-------------|------|--------|-----------|-------|---------------|
|            |          |               |             |      |        | Result    |       | Control limit |
| Alkalinity | 05W2105  | 04/18/2005    | 05-2276-09  | mg/L | 229.0  | 227.6     | 1     | 20            |

Note: N/A = Not applicable; NR: Not requested; NC= Not Calculated; ND: Not detected.

# APPENDIX D MEETING MINUTES

## **PARSONS**

100 W Walnut St, Pasadena, CA 91124

(626) 440-4000

Fax (626) 440-6200

**Meeting Notes** 

Subject: Meeting Notes regarding Project Update Meeting for 8 UST Sites, MCB Camp Pendleton Location: AC/S ES Office Bldg. 22165, Library Conference Room Date: 2/10/2005 Time: 9:00 AM Project: UST Sites, Camp Pendleton Facilitator & C. Silver, Parsons 733868.01000 Recorded By: Project No.: Attendees Name/Company Bipin Patel **RWQCB SWDIV** Laurie Walsh Chet Storrs MCB Camp Pendleton AC/S Cannon Silver Parsons

| Item | Meeting Notes                                                                                                                                                                                                                                                                                                                                                     | Action .                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.   | Parsons gave an overview of site locations, contaminants, cleanup goals, and remediation history.                                                                                                                                                                                                                                                                 | None.                                                                                                                                                                                                                                                                                                                                                  |
| 2.   | Discussed EPA Guidance for evaluation of biosparging effectiveness. Discussed recent guidance to maintain DO above 2 mg/L, and efforts to optimize system operation to achieve higher DO. Parsons professional judgment is that sparging pure oxygen would not significantly improve performance. Discussed success in observing oxygen utilization at the sites. | Parsons to use 2 mg/L as DO goal, and to continue to try optimizing system operation to reach this concentration.                                                                                                                                                                                                                                      |
| 3.   | Chet clarified that entire Base is within a beneficial use aquifer, but that comparing sites to the EPA guidance on low-risk soil and groundwater sites can be useful as an evaluation of remedial progress. He noted that other sites on Base have been closed even with groundwater monitoring results above MCLs.                                              | Noted.                                                                                                                                                                                                                                                                                                                                                 |
| 4.   | Discussed Site 22187. Noted that oxygen utilization remains at ~1%/day, suggesting that continued biosparging may be useful in removing residual biodegradable petroleum hydrocarbons within the vadose zone.                                                                                                                                                     | Biosparging will continue at Site 22187 until a further reduction in oxygen utilization is observed. Parsons to use multiple lines of evidence to evaluate system performance, including accepted models such as Bioscreen <sup>TM</sup> . Post remediation monitoring will include one year of groundwater monitoring and soil confirmation sampling. |
| 5.   | Discussed whether analysis for benzene and MTBE may be discontinued at Site 22187. Benzene has not been detected above cleanup                                                                                                                                                                                                                                    | Laurie to ask others at the RWQCB.                                                                                                                                                                                                                                                                                                                     |

Fax (626) 440-6200

| Item                                  | Si Weeting!Notesa:                                                                                 | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · · | goals since April 2002, and MTBE remains well                                                      | A STATE OF THE STA |
|                                       | below cleanup goals.                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.                                    | Discussed Site 2296, including the Response to                                                     | Parsons to discontinue biosparging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | Comments. Soil borings installed in February                                                       | system operation. One-year of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | 2003 indicated that leachable TPH remained                                                         | groundwater monitoring will include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | under the street, and remediation during 2004                                                      | April and October 2005 events. After                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | focused on this area. 2004 soil gas monitoring                                                     | one year, the System Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | oxygen utilization rates are now zero, indicating                                                  | Review Report will be submitted,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | that residual vadose zone soil contamination has                                                   | possibly with recommendations for no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | now been removed. Benzene MCL has been                                                             | further action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | met, and dissolved-phase TPHd concentrations                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | in MW2296-5 are decreasing.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.                                    | Discussed delivery of QA/QC data to RWQCB.                                                         | Parsons to send CD with 2 <sup>nd</sup> Quarter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                    | 2004 QA/QC data to Camp Pendleton,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                                     |                                                                                                    | who will then forward to RWQCB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.                                    | The site number reference system was                                                               | Parsons to update numbers on Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <del></del>                           | discussed.                                                                                         | to Comments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9.                                    | Discussed Site 1121. Benzene concentrations                                                        | Parsons to shutdown biosparging system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | are asymptotic in MW1121-8, and non-detect in                                                      | for one year to see if TPHd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | MW-10A. TPHd continues to fluctuate in                                                             | concentrations stabilize, perform soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | MW1121-8 and MW-10A, possibly as a result                                                          | confirmation sampling to document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | of BS system operation. Laurie noted that                                                          | percent reduction, and then present the case for site closure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | closure may be argued based on the distance to<br>the nearest Base drinking water well (9,300 feet | case for site closure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | from neighboring Site 1131), that TPHd has                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                     | only a taste and odor threshold, and that                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | biodegradation is occurring.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.                                   | Discussed Site 1131. Cleanup goals for                                                             | Similar to Site 1121, Parsons to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13.                                   | benzene have been met. TPHd concentrations                                                         | , · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | continue to fluctuate in MW1131-1, due to                                                          | 1 1 2 2 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | submerged residual pockets of petroleum                                                            | stabilize, perform soil confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | hydrocarbons within the weathered grandiolite.                                                     | sampling to document percent reduction,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | Overall plume is stable. Downgradient well                                                         | and then present the case for site closure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | MW1131-8 remains near cleanup goals.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11.                                   | Discussed Site 43302. TPHd concentrations                                                          | Biosparging will continue at Site 43302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | have increased as groundwater elevations have                                                      | until a further reduction in oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                     | decreased. Benzene concentrations have                                                             | utilization is observed. Continue to work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | continued to decrease. Oxygen utilization                                                          | on reaching MCL for benzene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | continues at ~0.5%/day.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.                                   | Discussed Site 53435. No benzene at the site.                                                      | Parsons to turn off the system for 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | Discussed how increasing TPHd concentrations                                                       | months to evaluate whether TPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | may be related to the decreasing groundwater                                                       | concentrations stabilize. The 4 <sup>th</sup> Quarter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | elevations or to BS system operation. Suggested                                                    | 2004 System and Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | turning off the system for 3 months to evaluate                                                    | Monitoring Report will be revised to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# **PARSONS**

100 W Walnut St, Pasadena, CA 91124

(626) 440-4000

Fax (626) 440-6200

| Item        | Meeting Notes                                    | Action                                   |  |  |  |
|-------------|--------------------------------------------------|------------------------------------------|--|--|--|
|             | impact on GW concentrations. Soil gas            | include a further evaluation of          |  |  |  |
|             | sampling indicates that residual biodegradable   | contamination sources, plume extent, and |  |  |  |
| 1           | petroleum compounds remain in the subsurface.    | trends.                                  |  |  |  |
|             | Discussed elevated TPH measured in               |                                          |  |  |  |
| į į         | downgradient MW53435-8. Discussed whether        |                                          |  |  |  |
|             | there were two sources and plumes present,       |                                          |  |  |  |
| 1 1         | based on 1997 soil boring data. Mentioned that   |                                          |  |  |  |
| ļ l         | the site has a high groundwater velocity. Laurie |                                          |  |  |  |
|             | mentioned that the proximity to the San Onofre   |                                          |  |  |  |
|             | Creek is a concern.                              |                                          |  |  |  |
| Site visits | were conducted to 22187, 2296, 1121, 1131,       | 43302, and 53435. The site visits were   |  |  |  |
| concluded   | at approximately 14:00.                          |                                          |  |  |  |
| cc: All     | participants                                     |                                          |  |  |  |
| Ma          | Martha Araujo, NFESC                             |                                          |  |  |  |
| File        | e                                                |                                          |  |  |  |